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1 Introduction 

. . . the perturbative version of the Wilson short distance 
ezpansion is completely clear since more than ten years. 

. . . A new theory is not needed. 

A referee for NUCLEAR PHYSICS B. 

1.1 The problem of asymptotic expansions in perturbative QFT. 

Approximations and asymptotic methods pervade applications of mathematics in natural sci- 
ences: nothing simplifies a problem more than reduction of the number of its independent 
parameters-and the idea of asymptotic expansion is one of the two most useful in this respect. 

In applied quantum field theory, one deals with amplitudes--or, more generally, with Green 
functions of elementary or composite operators, which depend on momentum and mass param- 
eters. Detailed investigation of dynamics of physical processes is rarely possible with more than 
just a few independent parameters. Therefore, one normally considers asymptotic regimes in 
which almost all the momenta and, masses are much larger (or smaller) than the chosen few. 
Since the most informative dynamical framework is currently provided by the perturbation 
theory, Green functions are represented as infinite sums over a hierarchy of Feynman diagrams, 
and the initial problem falls into two parts. 

First, one has to expand individual Feynman diagrams with respect to external parameters- 
masses and momenta. This is the analytical part of the problem. Empirical evidence indicated 
long ago that diagrams can be expanded in powers and logarithms of muses and momenta. For 
a wide class of the asymptotic regimes a formal proof of this fact was given by D. Slavnov [l]. 
The reasoning of [I] was based on a modification of the techniques used in the proof of the 
Weinberg theorem (which established the power-and-log nature of leading asymptotics in high- 
energy regimes; for a detailed discussion of the theorem see [2]). That result was extended to 
other asymptotic regimes using various techniques [3]-[6]. 

The main difficulty with asymptotic expansions of multiloop diagrams is that formal Taylor 
expansions of the integrand result in non-integrable singularities. This indicates that the in- 
tegrals depend on the expansion parameter non-analytically. The papers [l]-[S] followed, with 
variations, the old idea of splitting integration space-whether in momentum or parametric 
representations-into regions in such a way as to allow one to extract the non-analytic (usu- 
ally logarithmic) contribution from each region, eventually, by exlicit integration. However, 
complexity of multiloop diagrams exacerbated by ultraviolet renormalization made obtaining 
convenient explicit expressions for coefficients of such expansions unfeasible within a framework 
of elementary integral calculus. Nevertheless, expansions that involve simplest functions of the 
expansion parameter (e.g. powers and logarithms) are exactly what is needed in the final re- 
spect in applications, and even such limited information on the analytical form of expansions 
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can be useful.’ 

The second part of the perturbative expansion problem is combinatorial. The observa- 
tion that asymptotic expansions of non-perturbatively defined objects should have a non- 
perturbative form is due to K.Wilson [8] who also discovered that such operator product 
expansions (OPE) can be highly useful in phenomenology. W.Zimmermann [9], using what 
became known as the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) techniques, was first 
to show that it is indeed possible to construct an OPE for a c1a.s~ of short-distance asymptotic 
regimes.’ 

The main achievements of [9] were, first, the demonstration of how the expansion in a 
“global” OPE form is combinatorially restored from terms corresponding to separate Feynman 
diagrams; second, the required smallness of the remainder of the expansion was proved in pres- 
ence of UV renormalization. However, unlike the expansions obtained in [l], the coefficient 
functions of the OPE of [9] were not pure powers and logarithms of the expansion parameter 
(i.e. short distance or large momentum transfer) but also contained a non-trivial dependence 
on masses of the particles (apparently because masses were needed as regulators for infrared 
divergences). Therefore, although the results of [9] are firmly established theorems, they fell 
short of providing an adequate basis for applications (for a more detailed discussion see sub- 
sect. 2.2 below): first, the expressions for coefficient functions were unmanageable from purely 
calculational point of view3; second, infinite expansions could not be obtained in models with 
massless particles, e.g. QCD; third, the logarithms of masses contained in coefficient functions 
are--as became clear later [II]-non-perturbative within QCD in the sense that they cannot be 
reliably evaluated within perturbation theory using asymptotic freedom. All the above draw- 
backs have the same origin: a lack of the property that is now known as perfect factorization 
(we will discuss this point later on in subsect. 2.2). 

Lastly, although the BPHZ techniques may be fine as an instrument of verification of the 
results discovered by other methods, its heuristic potential turned out to be inadequate: it 
proved to be of little help in finding new results. Indeed, both the formula of the Bogoli- 
ubov R-operation [24] and the OPE were discovered using heuristics that are foreign to the 
BPHZ method, while the attempts to obtain full-fledged OPElike results for a wider class of 
asymptotic regimes (non-Euclidean, or Minkowskian regimes) have so far largely failed. 

A fully satisfactory solution of the expansion problem-which it is the aim of the present 
and companion publications to describe-has been found only for the class of the so-called 
Euclidean asymptotic regimes (for precise definitions see sect. 3) in a series of publications (12]- 

‘cf. an early attempt to develop calculational algorithms for coefficient functions of operator product expan- 
sions [‘il. 

‘It was also realized that the short-distance OPE is closely related to other expansion problems e.g. the 
problem of decoupling of heavy particles and low-energy effective Lagrangians-see a discussion and references 
below in subsect. 2.3; in fact, short-distance OPE and related problems constitute a subclass of Euclidean 
regimes studied in the present paper. 

3This explains why the first large-scale calculations of OPE beyond tree level (IO] were performed by “brute 
force”: the coefficient functions of an OPE were found by straightforward calculation of asymptotica of the 
relevant non-expanded amplitudes and then by explicit verification of the fact that the asymptotica have the 
form which agreea with the OPE ansatz. The more sophisticated methods of [14] were discovered [13] outside 
the BPHZ framework-using the ideas described in the present paper. 
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[22], including efficient calculational formulae for coefficient functions of OPE. The derivation 
in (12]-[22] employed a new mathematical techniques based on a novel concept of asymptotic 
expansions in the sense of distribution. Algorithmically, the key technical instrument here is 
the so-called asymptotic operation (As-operation). As has become clear [38), the techniques 
based on the As-operation offers a comprehensive and powerful alternative to what is known 
as the BPHZ theory. 

1.2 The lesson of the R-operation. 

N.Bogoliubov’s 1952 derivation of the fundamental formula for subtraction of UV divergences 
(the R-operation) [24] provides a fine example of a highly non-trivial reasoning which led to 
a highly non-trivial result-a reasoning that has nothing to do with how the R-operation is 
treated (i.e. “proved”) within the framework of the BPHZ method. By examining Bogoliubov’s 
reasoning one can exhibit the central dilemma of the theory of multiloop diagrams, and the 
lessons learnt thereby have a direct bearing on the theory of asymptotic expansions as well. 

The dilemma is as follows. On the one hand, Feynman diagrams are objects whose complex- 
ity increases infinitely with the order of perturbation theory. But that complexity is not amor- 
phous, it has a structure: Feynman diagrams can be generated, e.g., by iterating Schwinger- 
Dyson equations or via some other equivalent and orderly procedure (see e.g. the construction 
of perturbation theory in (241 from microcausality condition). To put it shortly, multiloop di- 
agrams are organised in a recursive fashion. For definiteness, here is an example of a causality 
condition of the kind that was used by Bogoliubov: 

TM~MYM~M~)J = W:(~MYN x V:(~MU)I, for z”,yo > z”,uo, U-1) 

which expresses the fact that chronological product of four Lagrangians is expressed as a simple 
product of T-products involving lesser number of Lagrangians, taken in a special order. (Each 
Lagrangian will correspond, in the final respect, to a vertex in a diagram.) On the other hand, 
the elements that participate in the recursion (l.l), are singular-their formal nature can best 
described by qualifying them as distributions-and their products must not be treated formally: 
products of distributions do not, generally speaking, exist (if one insists that they do, one runs 
into UV divergences). 

Nevertheless, Bogoliubov’s realization consists in that if all T-products of lower order are 
known, the totality of such relations defines T[,C(z) . L(u)] everywhere except for the point 
r=y=z=u. 

The last step in the definition of T-product can be best described using the language of 
distribution theory as a procedure of “extension of a functional” (see below sect. 5). Without 
entering into detail, we only note that at a practical level, such an extension consists in adding 
to the r.h.s. of (1.1) of a counterterm localized at the point I = y = z = u. It can only be a 
linear combination of derivatives of S(z - y)6(y - z)6(z - u). The number of derivatives to be 
added is determined by the leading singularity of the r.h.s. at the point I = y = .z = ~1, which 
can be determined by, essentially, power counting, after which there are simple ways to fix the 
coefficients in order to ensure finiteness of the resulting T-product. 
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The R-operation now emerges as a straightforward iteration of the same elementary step 
in situations with increasing number of Lagrangians on the 1.h.s.: addition of a counterterm 
corresponding to the singularity at an isolated point. 

The net effect of such a reasoning is, in a profound sense, Uorganizational”: it allows one 
to use the inherent recursive structures in order to reduce the reasoning to just one simple 
step. It is no secret (see e.g. the proof of the Weinber theorem [2]) that the problems involving 
multiloop diagrams are reduced, essentially, to a very cumbersome (if done in a straightforward 
Way) power counting. A proper “organization” of the problem requires to do power counting 
only for a simple subproblem (isolated point in the above example) so that the solution becomes 
rather obvious. 

However, Bogoliubov in the 50s was not familiar with the techniques of the modern version 
of the distribution theory [23], which explains the decision not to try to formalize the underlying 
heuristic derivation (such a formalization can be found in [ZO]) but rather to treat the formula 
for the R-operation as given and simpiy “rigorously prove ” it using the simplest available 
method-reducing the renormalized diagram to an absolutely convergent integral by resolving 
all recursions in the framework of a parametric representation. Thus the BPHZ method was 
born. 

1.3 As-operation: distributions and “perfect” expansions. 

It turns out [12] that the problem of expansions of multiloop diagrams can be considered in a 
way similar to Bogoliubov’s treatment of UV divergences. Since the main body of the present 
paper is devoted to explanation and clarification of this fact, only a few general remarks are 
offered here. 

First, the entire set of Feynman diagrams is structured in a recursive fashion, even if in 
more difficult problems (e.g. expansions) it is may not be easy to notice the recursion and its 
relevance to the problem at hand, 

If the second part of the expansion problem (restoration of expansions in a global OPE- 
like form) is to be successful, then the expansions of individual diagrams should be done so 
as to preserve the recursive structure. the problem gets complicated if properties like gauge 
invariance are involved which connect sets of diagrams. Thus, an efficient handling of recursions 
is a key to successful organization of any work with multiloop diagrams. 

A scrutiny of the problem of singularities encountered in formal expansions of integrands 
from the point of view of the expansion problem in its entirety-&. taking into account the 
recursion aspect-reveals that the underlying fundamental mathematical problem is that of 
expansion of products of singular functions in the sense of distributions (sect. 4). Its solution 
involves counterterms (similarly to the theory of R-operation described above); each coun- 
terterm corresponds, as we will see, to a subgraph, and the underlying recursive structure of 
multiloop diagrams is naturally reflected in the expansions, allowing simple exponentiation at 
the second, combinatorial stage [IS]. 

On the other hand, in order to save effort by avoiding proving useless theorems, the expan- 
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sions to be obtained must run in powers and logarithms of the expansion parameter (since we 
know the analytical structure of expansions; otherwise one would have to determine it in the 
process). 

Now we come to the most important point: once the analytical structure of expansions is 
determined, a conclusion follows: if such an ezpansion ezists, it is unique (see subsect.5.2). An 
immediate corrolary is that all structural properties of the otiginal collection of diagrams prior 
to ezpansion are inherited by the ezpansion in an orderly manner. 

Thus, the two key ideas of our method are: expansions in the sense of distributions and the 
obligatory requirement of Uperfection” of expansions to be obtained. 

One can say that, in the final respect, the two ideas offer a constructive heuristic framework 
to bridge the gap between the lowest level of the problem (the underlying power counting, 
division of integration spase into subregions etc.) and its highest level (global non-perturbative 
structure of the OPE-like expansions): reasoning using the language of distributions and “re- 
lentlessly pursuing perfection” in expansions at each step, we are guaranteed that the resulting 
formulae will possess all the desirable properties. 

The recipes of [14] and the multiloop calculations performed in [28] confirm that a good 
organization has its advantages. 

It remains to note that neither one of the above two ideas is specific to the case of Euclidean 
asymptotic regimes. 

1.4 Purpose and plan. 

The aim of the present paper is to explain-at a heuristic level comparable to that of the 
derivation of the R-operation in the classic book [24]-both the current understanding of the 
expansion problem and the analytical ideas behind the solution [12]-[22], presenting the results 
in a form that proved to be most convenient for applications in applied QFT. We begin by 
analyzing phenomenological applications in order to arrive at a meanimgful formulation of the 
asymptotic expansion problem and reviewing the results previously known in order to compare 
them with ours. we identify the problem of asymptotic expansions of Feynman integrands in 
the sense of distributions as a central one, and present its explicit solution in the form of the 
As-operation. In this paper we do not aim at achieving a complete mathematical formalization 
but rather concentrate on the key motivations, notions and ideas. We will use the dimensional 
regularization [32] (for a review see (26)) as a familiar technical framework to deal with various 
singularities one encounters in this kind of problems. 4 However, the use of dimensional regu- 
larization is by no means essential-a regularization-independent account of the proofs can be 
found in [20]-[22] where a fully formalized treatment of asymptotic expansion of products of 

‘The better known rigorous definition of the dimensional regularization is in terms of the a-parametric 
representation [33] while our reasoning is essentially based on momentum space picture. Formal constructions 
of dimensional regularization in terms of position/momentum representations exists [34], [35],hut the original 
definition of [32] is the most useful one in applications (which means, by the way, that it is this definition that 
should be a preferred subject of investigation; indeed, it is not dificult to adapt it for the purposes of formal 
proofs (361, but an in-depth discussion of this point goes beyond the scope of the present publication). 
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singular functions is presented.. 

In the companion publications [18] and [19] the As-operation is applied to two problems, 
respectively: deriving and studying OPE and its generalizations in the MS-scheme, and study- 
ing UV renormalization and related issues. In [18] the combinatorics of the transition from 
expansions for single diagrams to OPE in a global form is studied. To this end the so-called 
As-operation for integrated diagrams is defined (it was first introduced in [IS]). Its combina- 
torial structure is fully analogous to that of the R-operation, which fact allows one to obtain 
exponentiation easily and derive full asymptotic expansions of perturbative Green functions in 
any of the so-called Euclidean asymptotic regimes which comprise the familiar short-distance 
OPE, the low-energy effective Lagrangians to all orders of inverse masses of heavy particles 
etc. The derivation automatically yields the convenient calculational formulae that have been 
presented in an earlier publication (14) and extensively used in applications (see e.g. [28]). It 
should be noted that the treatment of combinatorics of the ordinary R-operation given in 1181 
is, probably, one of the simplest in the literature. 

In the third paper [19] a new approach to studying UV-divergent integrals will be described 
which is based on the use of the As-operation of the present work, and a new representation for 
the R-operation will be given which generalizes the results of sect. 8. (Ref.(lS] is a simplified 
version of the more formal text [21].) It should be noted that one of the major difficulties in 
studies of asymptotic expansions of Feynman diagrams used to be the presence of a subtraction 
procedure for eliminating UV divergences [9]. The representation [21] (see also sect. 8 below) 
trivializes the problem by reducing it to study of double asymptotic expansions (221, which can 
be accomplished by exactly the same methods as in the case of one-parameter expansions. It 
should be stressed that such a simplification mechanism is not limited to Euclidean problem, it 
is completely general. An informal description of our treatment of UV divergences (presented 
in full mathematical detail in (211) will be done in [19]. We will also explain how the new 
representation and the As-operation work together to produce the algorithm for calculations of 
renormalization counterterms and renormalization group functions known as the R.-operation 

IW 
The present paper is organized as follows. In the introductory sect. 2, we review some 

phenomenological problems of applied QFT falling under the general heading of Euclidean 
asymptotic expansions, and analyze the properties which the corresponding theoretical expan- 
sions must possess in order that their applications to phenomenology make sense. We also 
review the most important earlier results on the subject and explain what improvements and 
generalizations are offered by the new theory. In sect. 3 we explicitly formulate the Euclidean 
asymptotic expansion problem which we wish to study. 

In sects.4-8, the basic ideas of our method are discussed. Heuristic motivations for studying 
expansions of products of singular functions in the sense of the distribution theory (the Mss- 
ter problem) are presented in sect. 4. Sect. 5 contains some basic background mathematical 
definitions. The extension principle-our key to solving the Master problem-is presented and 
discussed in sect. 6. In sect. 7 we demonstrate how the ideas of the Extension principle work 
with a simple but representative example. Sect. 8 deals with expansions of one-loop Feynman 
integrals and introduces some ideas concerning the treatment of UV-divergent graphs, which 
are generalized in [21) and (191. 



In sects.9-13, we solve the Master problem in the general Euclidean case. First in sect. 9 
a system of notations is developed which allows one to compactly represent and conveniently 
manipulate Feynman integrands, without using integral representations - which is important 
if the benefits of the viewpoint of the distribution theory are to be used to the full. sect. 10 
describes and classifies singularities of the formal Taylor expansion of singular functions with 
respect to a parameter, and the important notion of IR-subgraph is introduced. In sect. 11 
we derive the general formulae for the As-operation for products of singular functions, which 
provides the solution to the Master problem. Explicit expressions for the counterterms of the 
As-operation are derived in sect. 12. sect. 13 contains a detailed discussion of an example with 
a non-trivial pattern of singularities. 

THE PROBLEM OF EUCLIDEAN 

ASYMPTOTIC EXPANSIONS 

2 Euclidean expansions in applications. 

Since there are important aspects in which formulation of the expansion problem within the 
standard BPHZ theory had been lacking, and since in publications with emphasis on appli- 
cations the exact mathematical nature of the problems is often not understood clearly, it is 
appropriate to review at least those phenomenological problems that are reduced to special 
cases of asymptotic expansions in Euclidean regimes. This will provide motivations for our 
formulation of the problem of Euclidean asymptotic expansions, and give us an opportunity to 
review the key results on the subject as well as to explain the improvements which are contained 
in our results as compared to those obtained by other authors. Some important new notions 
will also be introduced. 

2.1 Short-distance operator-product expansions. 

K.Wilson [8] considered expansions of operator products at short distances of the form: 

T[A(z)B(O)] = c ci(~)~i(o), z --t 0. 
I 

(2-l) 

However, despite the undeniable heuristic value of the point of view of position space rep- 
resentation, it is momentum representation picture that is immediately relevant for analysis 
of phenomenological problems while the transiti,on to coordinate representation somewhat ob- 
scures the Euclidean nature of the corresponding asymptotic regime. 

In fact, the generic problem which is essentially equivalent to short-distance expansions and 

8 
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immediately related to phenomenology, is to expand expressions like: 

/ 
ds eiqz < T[A(s)B(O) nJi(yi)] >o 

i 

as Q2 = -q2 * +w. 

It should be stressed that Q goes to infinity along Euclidean (space-like) directions. The 
following examples are intended to illustrate this point. 

(i) Within the QCD sum rules method [37] (for a review see (45]), when one studies the 
spectrum of hadrons built of light quarks, one considers expansions of the correlator of two 
local operators: 

l-I(Q’) = i / dz &+ < T[A(z)B(O)] >o (2.3) 

at Qs much greater than rr&,, the masses of light quarks. 

(ii) For the deep-inelastic lepton-hadron scattering (for a review see [46]) the moments of 
the observable structure functions are directly expressed (see [47]) as integrals of the quantity 

T(Q’), Zpq~, p$) = / dz ei9” < NjT[A(z)B(O)]JN > (2.4) 

One can see from the expressions presented in [47] that the behaviour of the n-th moment at 
Q’ + $00 and fixed n is determined by the behaviour of T(Q’) in the deeply Euclidean region 

Q2 B IWWIP~. 

(This does not contradict to the popular “light-cone” philosophy [48], where one studies the 
behaviour of the structure functions F(z, Qs), z = Q*/2qp,v, at Q2 + +oo and fixed a, which 
is equivalent to the light-cone expansion of the operator product. Indeed, reconstruction of 
functions from their moments is a mathematically “non-correct” problem [49] and requires 
additional information for its solution. This agrees with the fact that the short-distance limit 
is apparently more stringent than the light-cone one. However, from the point of view of 
phenomeno1ogica.l usefulness the two approaches are rather complementary [%I.) 

(iii) Further examples are provided by the problem of hadronic formfactors (usually, elec- 
tromagnetic ones; for a general review see (511) within the QCD sum rules approach (371. Here 
one deals with the three-point correlator of the form (cf. Fig. 1) 

I dz 4 exp i(w - QZY) < T [J(s) J(Y) j(o)1 >a, 

where the current J corresponds to the hadron, and j is the electromagnetic current. Denote 
Q* = -$,Q’ = -(ql - q2)2. The case of “intermediate momentum transfer” (521 

ST - Q2 B &.... 

presents an example of a problem with more than one heavy momentum. However, this case 
still belongs to OPE problems (z and y tend to 0 simultaneously); the complication due to the 
fact that there are more than two operators to be merged at one space-time point is inessential. 
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(;u) The case of “low momentum transfer” 153) d IS escribed by the asymptotic regime 

Q? > Q2 - d+i.. 

This aiso is essentially an OPE-like problem: J(s) and J(y) are separated by a short distance 
z - y -+ 0. Note that here the additional spectator current j is present within the same T- 
product along with the two operators J(z) and J(y) w ic are to be merged at a point. This h h 
fact precludes a straightforward substitution of the expansion (2.1) into (2.5) and gives rise to 
extra terms similar to those tliat appear in the example (iii). However, such complications are 
easily treated within the formalism which we will describe. 

It is convenient here to point out the difference between the Euclidean and Minkowskian 
asymptotic regimes. Suppose the momenta q; in (2.5) are time-like and one considers the 
so-called Sudakov asymptotic regime 

Q2 B 41 - &... 

The crucial point is that this does not imply automatically that ci + 0 componentwise but 
only that qi + pi where pi are some light-like momenta whose components are of order m. 
Such asymptotic regimes differ drastically from the purely Euclidean ones considered in the 
present paper. Although the basic ideas of our technique are sufficiently general to make it 
applicable to the Minkowskian case, specific implementation should take into account many 
new features--e.g. non-linearity of manifolds on which singularities of integrands are localized. 
One can get a flavour of what to expect in Minkowskian case from the review [27]. 

2.2 Technical aspects of OPE. Perfect factorization. 

Within perturbation theory, a first version of OPE was obtained by Zimmermann 191 in the 
following form: 

T[A(z + <)8(z)] = c CN.i(fr m)ON,i(z) + dIfINJ, (2.6) 

This result, however, despite the great theor:tical significance of [9], had a somewhat theoretical 
rather than practical relation to calculations, e.g. within pQCD. (Note: however, that For 
justice’s sake, it should be stressed the result (2.6), w IC in any case is a theorem, dates back h’ h 
to pre-QCD times.) 

First, the above version of OPE relies on momentum subtractions for UV renormalization, 
while all practical calculations beyond one loop are always carried out within the MS-scheme 
introduced by ‘t Hooft [25] (for a review see [26]). 

Second, for models with massless Lagrangian fields (e.g. for QCD with massless gluons) the 
d ependence of the coefficient functions in (2.6) on N can not be got rid of (this is connected 
with the fact that in [9] the MOM-schemes for UV renormalization were used and masses in 
fact played the role of infrared cutoffs)-a somewhat awkward property from the viewpoint of 
practical calculations. 

Third. the applicability of OPE to phenomenology of QCD rests on the assumption that the 
coefficient functions are calculable within perturbation theory. But the coefficient functions in 
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(2.6) depend on the masses m of elementary fields non-analytically and contain large log(n’[*) 
contributions. A renormalization group analysis [l l] h s ows that in p&CD the renormalization- 
group resummation of such terms takes one outside the region of applicability of perturbative 
methods. Presence of non-perturbative contributions defeats attempts to extract the non- 
perturbative values of matrix elements of the composite operators by fitting the r.h.s. of the 
above expansion against experimental data-a procedure typical of phenomenological studies 
of deeply inelastic scattering, the QCD sum rules method described above etc. 

The notion of perfect factorization-which had been lacking in, and seems to be inherently 
foreign to, the BPHZ theory-was introduced in [13]s. Its importance has by now been fully 
realized. At the level of operators/Green functions, perfect factorization means that all the 
non-analytical dependences on m in the expansions like (2.6) are localized within the matrix 
elements of the operators 0; while the coefficient functions ci depend on m analytically. It 
follows immediately that such an expansion would allow taking the limit m -+ 0 and, therefore, 
should be expected to be valid for models with massless particles. Moreover, since the masses 
m are no longer needed as IR regulators, one can expect to get rid of the dependence on N 
in (2.6). Furthermore, perfect factorization, implying that no non-analytical dependences are 
contained in the OPE coefficient functions, guarantees that extraction of the non-perturbative 
matrix elements from data is a mathematically meaningful procedure. 

At the level of individual diagrams, perfect factorization means that the asymptotic expan- 
sion should explicitly run in powers and logarithms of the expansion parameter. Such expan- 
sions are unique (see below subsect. 11.2) which fact is of paramount technical importance; for 
example, it allows one to conclude (cf. subsects.ll.2, 12.5) that such asymptotic expansions 
commute with multiplication by polynomials and other algebraic operations on diagrams- 
the property that greatly simplifies combinatorial study of OPE etc. in non-scalar models; 
in particular, one need not worry about things like gauge invariance of the expansions since 
such properties are inherited by expansions from initial integrals in a well-defined and orderly 
manner’. Uniqueness of such expansions also allows one to exhibit the recursive structure of 
the problem of expansion of Feynman diagrams which can be effectively used in derivation of 
OPE (see below subsects.ll.3-11.4). 

It turned out that the OPE derived directly within the MS-scheme [13]‘, [40], possess 
the property of perfect factorization so that: the dependence of the coefficient functions on 
masses is analytical (which was earlier shown to be a necessary condition of existence of the 
OPE in the MS scheme [7]); the expansion is a full asymptotic series; it is valid in models 
with massless particles; and due to greatly simplified dependence of coefficient functions on 
dimensional parameters, there exist algorithms for analytical evaluation of the relevant integrals 

‘In the context of the theory of R-operation perfect factorization corresponds to renormalization using the 
socalled massless schemes among which the MS scheme is by far the most useful one. 

sThe techniques for studying gauge properties was extended to the framework of the Euclidean As-operation 
in (661. In this respect recall that gauge invariance plays a central role in studies of non-Euclidean asymptotic 
expansions which represent a major unsolved problem with important applications to physics of hadrons (see 
b71). 

‘which result came about as a special case of the general theory of EA-expansions developed in [12]-(191, 
[20]-[22]. Efficiency of the techniques developed therein allowed us to obtain very general formulae first made 
public in [16]. The results of [16] were widely discussed in the literature [39], [41], [42]. 
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through three loops [54]. All these properties are interrelated, as is stressed above and as will 
be seen from our derivation. 

More conventional derivations of OPE in the MS-scheme & la BPHZ were presented by 
Llewellyn Smith and de Vries [40] and Gorishny [39]. The latter work clarified the connection 
of the results of [12]-[16] with the BPHZ method*. 

Theoretically speaking, one need not use specifically the MS-scheme to obtain OPE with 
the property of perfect factorization. Any of the so-called massless schemes (or generalized 
MS-schemes [21]) will do [22]. 

It should also be clearly understood: the most important thing about the new results is 
not the fact that, say expansions were proved “in the MS scheme”, but that such expansions 
possess the property of perfect fatorization. This should not be surprising in view of the fact 
that the MS scheme has the property of polynomiality of its counterterms in masses [26] which 
itself is a special case of perfect factorization-this point is best understood in the context 
of the definition of generalized MS schemes in [21] by way of subtraction of UV-dangerous 
ssymptotics from momentum-space integrands, so that evaluation of those ssymptotics is done 
using the same apparatus of the As-operation as used in obtaining asymptotic expansions of 
diagrams. This similarity is not so much technical as ideological. 

2.3 Heavy mass expansions. 

Consider a QFT model in which all the fields are divided into two sets: light fields collectively 
denoted as ‘p and heavy fields @. Their Lagrangian masses are m and M, respectively. Assume 
that all M are much larger than m, and consider a Green function G of light fields only. It 
depends on M besides other-momentum, coordinate etc.-parameters. The problem is to 
study the asymptotic expansion of G in inverse powers of A4 : 

G(. . , M) ,?, ? (2.7) 

In fact the first two terms in the heavy mass expansion had been known for some time. 
The “decoupling” theorem [55] (f or a review and references see [26], [2]) asserts that, up to 
O(M-‘) corrections, the effect of the virtual presence of heavy particles (in phenomenologically 

‘Still another approach, specifically designed for achieving ultimate rigour in treatment of dimensional reg- 
ularization within the techniques of the a-parametric representation is sketched in [41]. It is unclear, however, 
how successful the latter attempt was because neither that paper nor the publications cited therein contain 
explicit treatment of the analytical part of the proof (recall in this respect that a-parametric integrands for 
MS-renormalized diagrams are rather cumbersome distributions [43] so that advantages of using such a repre- 
sentation are somewhat unclear). On the other hand, the combinatorial part of the proof is discussed in the 
original publications [16], [18] m a more straightforward manner. 

The regularization independent aspects of the original derivation have been exhaustively discussed in [20], [21] 
and [22]. Various ways to rigorously treat dimensional regularization without parametric representations were 
discussed in [34], [35], although no much practical understanding is added thereby to the heuristic treatment t 
of [32], [26]. Anyway, the variety of uses of dimensional regularization in practical calculations is such that 
there is little hope that everything that is being done will ever be “rigorously proved”. In the final respect, 
mathematics is not about rigour. Mathematics is, first and foremost, about calculations. 
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meaningful cases) is absorbed into a finite renormalization of the Lagrangian of the light world, 
whose parameters become dependent on M. This fixes the form of the leading term of the 
M -+ co expansion. The next-to-leading term can be described as differing from the initial 
Green function by one local operator insertion. (This result was first obtained in [56] by making 
use of Wilson’s OPE.) More formally, let ,& 
and let < Tlp(zr) . _ ip(s,) >oc,O* 

be the total Lagrangian of light and heavy fields, 
be a Green function of the light fields in the world containing 

both light and heavy fields. Then the leading and next-to-leading contributions to the expansion 
have the form: 

< Tp(z1). . rp(+,) >p Mym W’)( < Tp(z1). . . VP(&) >$i 

+ < Tip(s1). . . P(G) [ q /dy &y)]$‘} + o(M-‘), 

where L:!“,’ is obtained from that part of L toc which describes the light fields, by a finite M- 
dependent renormalization of its parameters; &)(y) is a local operator composed of light fields; 
z(M) and g(M) are functions of M with logarithmic leading behaviour at M -+ M. (The UV 
renormalization in all cases is implicit.) 

The notation L$ is suggestive, and indeed, to all orders in M-‘, 

< TV(~). ip(z,) >oc,,, Mzm z”(M) < TV(~). . cp(z,) >fR 

where 
Lefi = x M-“g,(M)&. (2.10) 

n 

The derivation of this formula will be given within the MS-scheme, so that our results will 
contain as a by-product a derivation of the decoupling theorem and of the formula (2.8) directly 
within the MS-scheme, which has been lacking. Moreover, the expansions we will obtain possess 
the property of perfect factorization similar to that discussed in the preceding subsection, so 
that the heavy and light parameters are fully factorized, i.e. z(M) and g(M) do not depend 
on m, but only on the heavy mass M and, logarithmically, on a renormalization parameter. 

The most important phenomenological applications of the heavy mass expansion are: the 
study of effects of heavy quarks on the low-energy light quark properties, especially on the 
parameter Aooo (for a review see [26]); th e 1 ow-energy quark Lagrangian of the electro-weak 
interactions [56] ; evaluation of muon contribution to the electron anomalous magnetic moment 
[57]. The latter problem is interesting as an example of a problem where a very high precision- 
and, consequently, taking into account many terms in the expansion is required. 

2.4 Effects of heavy masses on OPE. 

The QCD sum rules approach to studying the heavy quark bound system [37], [45] presents 
an example of a problem where a short-distance OPE is modified by presence of a heavy mass. 
Here one should study the correlator (2.3) but for such an asymptotic regime that the squared 
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mass M* of the heavy quark were of the same order of magnitude as Qs. (This point was 
stressed in [58].) 

It follows from our general results that the expansion in this case has the form similar to 
ordinary OPE: 

eq(2.3) Q2mMlgmt d. C 4~ Q) < Oi(O) ‘0, (2.11) 
,, i 

but with coefficient functions depending on the heavy mass M. To our knowledge, a derivation 
of the expansion (2.11) has heretofore been lacking. 

2.5 Light-by-light scattering. Linear restrictions on heavy mo- 
menta. 

Consider the problem of deeply inelastic light-by-light scattering with both photons deeply 
virtual [59]. Here one studies the four-point correlator of hadronic electromagnetic currents 
with the pattern of external momenta as depicted in Fig. 2a, in the asymptotic regime 

Q: - Q; B d,+... CQ: = d). 

A new feature in this case is that along with the general momentum conservation an additional 
linear restriction is imposed on the heavy momenta (cf. Fig. 2b). Motivated by this example, we 
will allow arbitrary restrictions of this kind in our general treatment of Euclidean asymptotic 
expansions. 

Note that the Green function to be expanded may not exist at the restricted momentaowing 
to infrared singularities. On the other hand, if it does, its expansion can be obtained via our 
technique in the same way as in the non-restricted case. However, the Q-dependent coefficient 
functions of the expansion of the non-restricted Green function (cf. the one corresponding to 
Fig. 2b) will in general be singular at the restricted momenta and have no relation to the 
coefficient functions for the restricted case. In other words, restricting heavy momenta and 
performing expansion are in general non-commuting operations. 

Allowing restrictions on the heavy momenta has no bearing on our formalism for expansion 
of a single multiloop Feynman graph but only on the subsequent combinatorial analysis of the 
global structure of the resulting expansions of Green functions as a whole. 

2.6 Contact terms. 

In our treatment of Euclidean asymptotic expansions we will be considering Green functions as 
distributions with respect to the external momenta. ’ Apart from fundamental meta-level argu- 
ments (finite energy resolution of measuring devices etc.), there are more specific motivations 
for this. 

‘The fact that expansions in this case run in powers and logs was obtained in [5], without explicit expressions 
for the contact terms. There are many other examples in the literature where distributions and asymptotic 
expansions appeared together--see e.g. eq. (46) in [68]. * 
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The first one is of a technical nature: we will in any case make an essential use of the theory 
of distributions in order to expand integrands of multiloop Feynman graphs so that considering 
Green functions as distributions over external momenta brings uniformity to our argument (cf. 
subsect. 4.2 below) and is therefore inherently natural. 

Another-rather typical-motivation comes from the QCD sum rules method [37]. The 
starting point here is a spectral representation for the correlator (2.3), e.g. 

n(Q”) = lrn ds 3. 

An important element of the techniques of [37] is the so-called Borelization procedure which is 
applied to both sides of (2.12) in order to suppress contributions from large s in the spectral 
sum on the r.h.s. of (2.12). It is assumed in [37] without proof that Borelization procedure 
commutes with the asymptotic expansion of P(Q*) at Q* + +oo. However, this problem can 
be avoided (at the cost of some complication of formulae) by the following modification of the 
arguments of [37]. Consider the relation: 

F(s/X) = / dDQ $z2&’ = const irn dz zDf2 ‘,‘“,‘y (2.13) 

One can find-eg. using tables of integral transforms-pairs of p(Q’) (related to the Bessel 
functions J”(G)) and F(s) (related to the McDonald functions Z<“(s)) such that: 

(i) eq.(2.13) is satisfied; 

(ii) q(Q’) is smooth in Q everywhere including Q = 0; 

(ii;) lp(Q*) is bounded from above by some negative power of Q’ at Q’ --t co; 

(;v) F(s) decreases at s + 00 faster than any power s-” (namely, as exp(-&) times a 
negative power of s). 

Then using (2.12) and (2.13) one gets an exact sum rule: 

/ dDQ ip(Q”/X) II = i-ds p(s) F(sIX). 

The weight function F on the r.h.s. provides as good a suppression of larger s contributions 
as the simple exponent used in [37] At the same time, the 1.h.s. is the value of the distribution 
II on the test function cp(Q’/X) (the fact that (p(Q2) does not decrease at Q* -+ $00 as 
fast as is required of the Schwartz’s test functions [23] is immaterial since we do not have to 
deal with arbitrary tempered distributions but with a specific one, II( whose behaviour at 
large Q2 is sufficiently good to make it well-defined on the I). 

The next step in the recipe of [37] would be to use the expansion at Q* + +oc for II( 
Let us rewrite the 1.h.s. of (2.14) as 

AD” 
/ 

dDQcp(Q2) II(Q”/l). 
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Now it is clear that II should b e expanded not as a function but as a distribution “in 
the sense of distributions”. Let us explain the meaning of this phrase in our specific case (cf. 
subsect. 5.1). 

The asymptotic expansion of II considered as an ordinary function of Q2 at Q* + +W 
in the usual sense can be written as 

(2.15) 

where 0; are coefficients independent of Qs, and q(Qs) are ordinary functions, e.g. G(&*) = 
Qs(-“). One can not integrate (2.15) against a test function because, first, c;(Q’) may be too 
singular at Q -+ 0; second, there is no guarantee that termwise integration of the r.h.s. results 
in a correct asymptotic expansion of the integral on the 1.h.s. 

On the other hand, for an expansion 

II(AQ*) A-', ~c~(XQ') O;,, 
i' 

(2.16) 

to hold in the sense of distributions, all c~“‘(Q’) must be well-defined distributions over the 
whole range of Q, and its termwise integration against any test function $(Q) must generate a 
correct asymptotic expansion at X -+ 03 of the X-dependent function 

f(x) = / dDQ TAQ’) ?I(&). (2.17) 

The relation between (2.15) and (2.16) can be established by noticing that both expansions 
allow integration with test functions localized in small neighbourhoods of the points Q # 0. 
It follows that cp at Q # 0 should be either zero, or it should coincide with some ci; in the 
latter case 0: = 0;. Therefore, 

?c??&)Oi~ = ~c”(Q)O; + CAC,,(Q)O:,, 
i i’ 

(2.18) 

where At,,(Q) are localized at Q = 0, which implies that they are constructed of S(Q) and its 
derivatives, while c?(Q) are distributions which by definition coincide with ci(Q) at Q f 0. For 
example, if 

n(Q) = $01 + o(Q-*)r (2.19) 

then the expansion in the sense of distributions will have the form 

n(Q) = ($} % + 6(Q)O: + o(&-~), (2.20) 

where 

[+}R=F$-j [&+Z”W], (2.21) 

with 2, chosen so as to render finite the integrals of (2.21) with arbitrary test functions. Note 
that the expression (2.20) is unique-cf. below subsect. 5.2-so that a change of 2, by a finite 
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constant is compensated by an appropriate change of 0’. And, of course, one can use any other 
regularization in (2.21). 

We see that the expansion in the sense of distributions differs from the expansion in the 
usual sense by &functional contributions (compare (2.19) with (2.20) and (2.21)). Such con- 
tributions can be conveniently denoted as contact terms. Ref. [60] contains an example which 
demonstrates that such contact terms can be numerically significant in applications. 

Our formulae for general Euclidean asymptotic expansions [16]-[18] include explicit expres- 
sions for the contact terms. 

3 The formal problem of Euclidean expansions. 

Motivated by the examples considered above, let us now present a formal description of the 
general problem of Euclidean asymptotic expansions, following [16]. We will stay within the 
framework of perturbative QFT [24] and assume that the MS-scheme [25] is always used for 
UV renormalization. 

3.1 Green functions. 

There are two types of fields collectively denoted as ‘p (light fields) and @ (heavy fields), with 
Lagrangian masses m (some of which may be zero) and M. Let hj(rj) be local monomials built 
of (o, and Hl(yr) built of both ‘p and @. (0 ne could allow h to be also built of @ but such cases 
seem to never occur in applications.) Denote the full Lagrangian of the model as 

&(P, Q,m, M). (3.1) 

Consider the Green function 

G(QtM,k,m,~l= (~d2i)(I;Id~,)exPi[~QIyl+~~jxj] J (3.2) 

x < vaclRT[I;lH,(yi)~hj(zj)]Iva~ >““, 
j 

where R is the UV R-operation and p the renormalization parameter; T denotes the chrono- 
logical product. It is assumed that the correlator is evaluated within the model described by 
J!&; in the functional notation: 

< vaclT[. .]I?Jac >c*o** J dq da [. . .] expi J dx am,,. (3.3) 

The Green function (3.2) as defined should be proportional to the &function which expresses 
the overall momentum conservation, but we will ignore it, just assuming that 

TQt+Ckj=O. (3.4) 
j 
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The momenta Q and mssses M will be called heavy while k and m light, and it will be 
assumed that the ratio of scales of light over heavy parameters (denoted as K) is vanishing, and 
G is to be expanded with respect to n. More precisely, we wish to expand in n the expression 

G(Q,M,nk,m,p) N ? 
rr-10 (3.5) 

A remark is in order. We have implicitly assumed that the renormalization parameter 
p belongs to the heavy parameters. However, since we always use the MS-scheme for UV 
renormalization, each Feynman graph contributing to the Green function G is a polynomial 
in log p. Therefore, if we take p to be proportional to n, the additional dependence on K can 
be easily taken into account. At the level of Green functions, the renormalization group can 
be used to get rid of the n-dependence of p. The net effect is that it is irrelevant whether we 
consider p as a heavy or light parameter. Having this in view and using the homogeneity of G 
with respect to its dimensional parameters: 

G(Q, M, 4 Km, ~0 = K’“WQ/K, M/K, km, P/K), 

one sees that the problem (3.5) is equivalent to studying expansions of G in Q and M -+ 
00, which is more readily associated with phenomenological problems. The form (3.5) of the 
expansion problem is more convenient for our purposes. 

3.2 Perfect factorization. 

The most important requirement which asymptotic expansions should satisfy in the framework 
of perturbative QFT is that the dependence on heavy and light parameters should be fully 
factorized (see the discussion in subsect. 2.2). Thus, if the expansion has the form”’ 

G(Q, M, 4 Km) X50 CG(&, W G(+ Km), 

then not only Gi should be independent of Q and M, but also c;(Q, M) of k and m. 

At the level of individual diagrams, the requirement of perfect factorization means that 
individual terms on the r.h.s. of (3.6) should be polynomials of n and log n. This automatically 
implies that c; are sums of powers and logs of Q and M, while G;, of k and m. In a more 
general context, one should aim at obtaining expansions (3.6) in such a form that the scaling 
properties of, say, ci(Q, M) with respect to Q and M be as simple as possible.” 

The requirement of perfect factorization is completely universal and not limited to the case 
of Euclidean regimes. 

“‘It has become customary to refer to ci as to “coefficient functions” and to Gi as to “matrix elements”-the 
terminology inherited from the theory of short-distance OPE. 

“A priori the analytical form of dependence on the expansion parameter may not be know. In more general 
contexts+.g. beyond the framework of perturbation theory-the language of dilatation group and its irreducible 
representations might be useful here. 
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3.3 Euclidean regimes. 

The problem (3.5) is yet too general. However, the examples considered in section 2 demonstrate 
that it will remain sufficiently meaningful if we limit ourselves to the special case of Euclidean 
asymptotic expansions. Namely, we assume that 

Q: < 0, for each &I E Q. (3.7) 

The problem (3.5) with the restriction (3.7) can be called Euclidean asymptotic expansion 
problem. It allows a full and explicit solution [12]-[22]. 

The meaning of the restriction (3.7) IS as follows. Perform the Wick rotation of all integration 
momenta in Feynman diagrams into Euclidean region. Then only the light external momenta k 
will remain non-Euclidean. However, since one performs expansions with respect to k at k = 0, 
the fact of k being non-Euclidean is inessential from technical viewpoint. Therefore, from the 
very beginning one can assume to work in a purely Euclidean theory. This drastically simplifies 
the geometry of IR singularitiesi and, in the final respect, allows one to obtain an explicit and 
complete solution of the general Euclidean expansion problem. 

Note also that it is for the Euclidean version of the general expansion problem that most 
clean phenomenological predictions can be made within QCD where asymptotic freedom al- 
lows one to perform renormalization-group improved calculations of the Q- and M-dependent 
coefficient functions of OPE-like expansions. 

From now on, we are going to work in a purely Euclidean theory, so that the condition (3.7) 
is satisfied automatically. 

3.4 Linear restrictions on heavy momenta. 

For the heavy momenta on the 1.h.s. of (3.2) the following restriction due to momentum 
conservation holds: 

TQf=-KCkj s20 0, 
j 

(34 

i.e. the sum of all heavy momenta is not itself heavy. A less trivial example of linear restrictions 
is provided by the light-by-light scattering problem (subsect. 2.5). 

In general, one can allow any number of linear restrictions of the form 

T cr&r = O(K) 

to be imposed on the heavy momenta. In such a case we may assume that there exist linearly- 
independent momentum variables &i which are independent of K, and each Qr is expressed as 
a linear combination of Q; and k with coefficients independent of n : 

&I = QdB, k). (3.10) 

lZFor example, consider the singularity generated by the massless propagator l/p4. In Minkowskian region it 
is smeared over the light cone p* = 0 while in Euclidean region it is localized at the point p = 0. 
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The restrictions (3.8), (3.9) should thus be automatically satisfied. 

One should take care not to impose restrictions such as would make the Green functions to 
be expanded ill-defined. However, even if the restricted Green function develops a singularity 
at n = 0 but is otherwise well-defined for all K # 0, then the expansion problem still makes 
sense (the singularity will then show up as a contribution proportional to a non-positive power 
of K) and can be treated by our methodP. 

Among all possible linear restrictions, the so-called natural restrictions are of immediate 
physical interest. Such restrictions have the form 

,g &I = O(fi) *To 0, 
01 

where Lc, is a subset of the set of all 1, and L, for different o are pairwise non-intersecting. 
In other words, the external lines corresponding to heavy momenta are organized into non- 
intersecting bunches, and within each such bunch the heavy momentum conservation holds 
separately. 

One could also impose similar linear restrictions besides conservation on the light momenta 
k. We will not do this, however, because in all interesting cases the final formulae will not be 
affected thereby (unlike the case of restrictions on heavy momenta). 

3.5 Contact terms. 

As was discussed in subsect. 2.6, it is natural to consider Green functions as distributions over 
momentum variables; the expansions in the sense of the distribution theory are characterized, 
from the pragmatic viewpoint, by presence of contact terms proportional to &functions of heavy 
momenta Q in ci on the r.h.s. of (3.6). 

More specifically, let F(Q) be a test function of the independent variables Q;. Then what 
one has in fact to expand is the expression 

I(~dgi)F(g)G(Q(8,kk),M,kk,km,~) N ? s-0 

for arbitrary F. This means, first, that all c; in (3.6) are distributions and, second, that (3.6) 
retains its asymptotic nature after termwise integration against F(Q). 

When there is no need to take into account contact terms, it is sufficient to consider Q 
as parameters analogous to heavy masses. Then we will say that one deals with the sim- 
plified expansion problem without contact terms. One should only be careful to fix Q at 
“non-exceptional” values at which the Q-dependent factors of the expansion are smooth in Q. 
The exact criteria here are of little practical usefulness. 

Note that in most cases of phenomenological interest the Green functions are integrable 
(although singular at some points) functions of the light momenta Ic. Therefore for the sake 

% should be noted that in this case the singular dependence on K in the expansion will be localized within 
the matrix elements Gi in (3.6) while c; will be insensitive to what value K is set to. 
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of simplicity we do not introduce test functions for k; it will be sufficient to assume that k 
are fixed at some non-exceptional values. Normally, if the Green function and all terms of the 
asymptotic expansion are integrable functions of k, then the expansion allows termwise inte- 
grations against k-dependent test functions; or, to put it formally, the operation of asymptotic 
expansion commutes with such integrations. 

To summarize: we work within the perturbative QFT, always use the MS scheme for WV 
renormalization, consider arbitrary models, and wish to obtain full asymptotic expansions for 
arbitrary Green functions for the class of Euclidean asymptotic regimes. We allow linear restric- 
tions to be imposed on the heavy momenta of the Green functions, and consider and expand 
the latter in the sense of distributions. In the expressions to be obtained, the heavy and light 
parameters must be fully factorized. 

BASIC IDEAS 

4 Why expand products of singular functions? 

The central notion of the theory of As-operation is that of asymptotic expansion in the sense 
of distributions. In this section we present motivations for studying expansions of products of 
singular functions in the sense of distributions. Although we have assumed to work in Euclidean 
theories, our reasoning here remains valid in the most general Minkowskian case as well. 

4.1 Local study of multiloop integrands. 

We start with studying expansions of an arbitrary multiloop Feynman diagram G which can be 
taken to be one-particle irreducible. Let G(p, K) be its integrand (prior to UV renormalization) 
where p is the set of all loop momenta, and we have also explicitly shown the dependence on 
the expansion parameter n. The final goal is to obtain an expansion in K of the expression 

R / 4~ G(P, 61, (4.1) 

where R is the UV R-operation, while integration over p is performed in infinite limits. A 
scrutiny reveals, however, that the starting point should be the expansion not of the integral 
(4.1) but of the integrand considered as a distribution over p. 

Indeed, whatever prescription for the R-operation were chosen, one would not be relieved of 
the necessity to study contributions to the above integrals from finite regions of the integration 
space. Therefore, it is natural first to replace the R-operation by a cut-off at large integration 
momenta. This allows one to strip the expansion problem of the collateral complications due 
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to UV renormalization-anyway, many diagrams are not UV divergent at all. The cut-off can 
be chosen in the form of a smooth function H(p/A) equal to zero at all sufficiently large p : 

I &G(P, ~)H(dA). 
A straightforward approach to expanding such integrals in n would be to first expand their 
integrands. However, the formal Taylor expansion of G(Q, K) in powers of n results, as a rule, 
in non-integrable singularities. For example, for a scalar propagator with a light mass m = O(K) 
one has: 1 1 1 I I 

-m2~+... PZ+mZ=jT # (4.3) 

The singularities of the formal expansions like those on the r.h.s. of (4.3) will be called Euclidean 
infrared-or simply IR-singularities. They correspond to the so-called soft singularities which 
appear in studies of IR divergences in QED and &CD, while collinear singularities have no 
analogue in the Euclidean case. 

The non-integrable singularities on the r.h.s. of (4.3) preclude substitution of (4.3) into (4.2). 
Emergence of such singularities also means that the integrals depend on K non-analytically. 
From the technical point of view, it is our major task to develop systematic algorithms for 
treating such singularities in this and more complicated cases and to construct correct asymp- 
totic expansions starting from the formal series like (4.3). 

The traditional approach to the problem is to split the integration region into two parts: a 
neighbourhood 0 of the point p = 0, and the complement of 0, and then to extract the non- 
analytical part of the expansion coming from the integral over 0 by e.g. explicit integrations or 
using special tricks. Although it is the most straightforward way to establish the power-and-log 
nature of the expansion (cf. [l], [3]), it is practically impossible to obtain explicit expressions 
that were suitable for restoring the OPE-like combinatorial structures out of pieces coming from 
different diagrams. There is, nevertheless, another approach based on the ideas and notions 
of modern mathematics, namely, the theory of distributions [23], which we now proceed to 
describe. 

Our key observation is that the same propagator (4.3) can appear within different diagrams 
and even in different places in the same diagram, so that it is natural to regard it as a distribu- 
tion, the rest of G(p, K) playing the role of a test function. The same is also true of the groups 
of factors in G(p, K) containing more than one propagator, and of G(p, K) itself. More precisely, 
let 0 be a small region of the integration space. Let Gsi”s(p, 6) be the product of those factors 
from G(p,n) whose formal expansions are singular within 0. Denote the rest of G as Ges. 
There exist many Feynman diagrams leading to the same G” i”s but different Greg’s Therefore, 
G”“s can be regarded as a distribution in 0, while G’s plays the role of a test function. (Such a 
reasoning leads to a very important localisation property of the As-operation considered below 
in subsect. 11.3.) 

One can also observe that besides troublesome propagators like (4.3), there are factors-eg. 
propagators with a heavy mass, 

1 

M* + (; - nk)2 ’ (4.4) 
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or vertex polynomials-whose expansion in K is harmless. Denote the product of all such factors 
in G as Ps and the rest of G as Pins. Again, Ps may vary for the same Gains, so that the 
latter plays the role of a distribution and the former of a test function. 

Summarizing our observations, we arrive at the conclusion that the fundamental technical 
problem is to learn to expand in h: the integrals like 

/ 4~ V(P) G(P> K) (4.5) 

with arbitrary test functions p(p); an equivalent way to put it is that one has to obtain an 
expansion of G(p, K) in the sense of distributions [23] (f or a precise definition see below sub- 
sect. 5.1). 

The problem of studying expansions of products of singular functions with respect to pa- 
rameters in the sense of the distribution theory will be referred to, in view of its paramount 
importance within our formalism, as the Master proHem. It plays the crucial role in our theory, 
and all mathematical difficulties of analytical nature are concentrated in it. 

4.2 Remarks. 

(i) If ‘p in (4.5) is localized within a small region 0, then one can study local structure of 
the expansion of G(p, K) in each 0. Then an expansion valid for all p can be easily obtained 
using standard techniques of the distribution theory. Such a localization trick proves to be 
a powerful instrument in obtaining expansions of products of singular functions-see below 
sect. 11 and [20]. 

(ii) Transition from localized ‘p to up = 1 requires an analysis of asymptotics of the corre- 
sponding distributions in the UV region p --t co. For example, as will be shown below, studying 
UV renormalization of the graph G is equivalent to expansion of G(Xp, K) considered as a dis- 
tribution in p # 0, at X ---t co. One can show that this is a special case of the Master problem 
with a special choice of the expansion parameter. Studying how asymptotic properties of an 
expansion are affected by taking the limit p + 00 reduces to studying double As-expansions 
which is done in essentially the same manner as in the case of expansions with respect to one 
parameter [22]. 

(iii) The expansion problem as formulated above requires to consider Feynman diagrams as 
distributions in heavy external momenta. Such a formulation is very natural in the context of 
the Master problem. Indeed, if the diagram is integrated over the heavy momenta Q with the 
test function x(Q), then instead of the integrals (4.5) one should expand integrals of the form 

/ dpd& V(P) x(Q) G(P, Q, 6). (4.6) 

Combine both sets of momenta into one: p’ = (p,Q), consider G as a distribution in p’, and 
expand the expression 

/ ~P’v’(P’) G(P’, ~1. (4.7) 

One can see that, essentially, there is nothing new here as compared with (4.5). Choosing 

CP’(P, Q) = VP(P) x(Q), we return to (4.5). 
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4.3 Analogy with UV renormalization. 

As was pointed out in [12] there exists an analogy between the problem of UV divergences in 
Bogoliubov’s interpretation [24] and the problem of singularities in expansions like (4.3): in 
both cases the divergences spring up as a result of formal manipulations with objects which by 
their nature are distributions. Therefore, Bogoliubov’s solution of the UV problem provides an 
insight into how the divergences in expansions (4.3) should be handled. 

Let us reason as follows (for definiteness consider (4.3)). A n important observation is that 
the expansion (4.3) (with 4-dimensional p) allows (i.e. retains its meaning as an asymptotic 
expansion after) a termwise integration with any test function which is equal to zero in any 
arbitrarily small neighbourhood of the point p = 0. Therefore, the only way to improve upon 
the formal expansion (4.3) is to add terms localized at p = 0 to the r.h.s. So, it is to be expected 
that an expansion valid in the sense of distributions will look like 

1 1 

p= +d m’i-cl p= 
- - $ + c(m) 6(p) + ) 

where c(m) is a scalar coefficient. 

The role of the new “counterterm” on the r.h.s. is two-fold. First, it should provide an 
infinite contribution to counterbalance the divergence due to the singularity of p-” and ensure 
integrability of the r.h.s. as a whole against arbitrary test functions. Second, it should ensure 
the asymptotic character of the expansion. Note that the dependence of c(m) on m can not be 
trivial, for there is no other place for the expected non-analyticity in m to show up. 

Thus, heuristically speaking, our problem is to obtain explicit expressions for the coefficients 
c(m) in (4.8) and in more complicated cases. 

5 Asymptotic expansions of distributions. 

Although asymptotic expansions and distributions did appear simultaneously in various con- 
texts in the literature, it seems that no systematic study of the corresponding mathematical 
notions has ever been undertaken. Below are presented background mathematical definitions 
and some results of a general character. Since we are not aiming at attaining full mathematical 
formalization in the present paper, some technical details are omitted and others treated at a 
heuristic level. A substantial formal treatment of the subject can be found in [20]. 

5.1 Definition. 

Let F(p, K) be a distribution over p depending on the parameter n. We say that the series 

F(P, 6) x:0 c KinFn(P, 61, 
n 

(5.1) 
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represents an asymptotic expansion in the sense of distributions if a termwise integration of 
(5.1) with any test function y(p) results in a correct asymptotic expansion in the usual sense, 
i.e. 

/ dPF(P7 K) 9(P) .zo nFN fen [/ dPFn(P, K) ‘p(P)] + 4KN), 

This implies that each F” is a well-defined distribution over p. We say in such cases that the 
expansion (5.1) allovrs integration with arbitrary test functions. 

We will usually have to deal with expansions such that each F, is a polynomial in log x. : 

Fn(p, K) = klog’a Fn,i. 
id 

(5.3) 

This form of n-dependence will be called soft (see also below subsect. 5.3). 

5.2 Uniqueness. 

If an expansion like (5.1), (5.3) exists, it is unique. Indeed, integrating (5.1) with test functions 
we get asymptotic expansions in the usual sense, for which the uniqueness is an elementary 
fact [61]. It is important to understand that there is no point in discussing uniqueness unless 
the form of dependence on the expansion parameter is explicitly fixed, as in (5.1), (5.3). 

The property of uniqueness is extremely important. First, it allows one to immediately 
obtain useful technical results like the localization property of the As-operation for products 
of singular functions (subsect. 11.3) or its commutativity with multiplications by polynomials 
(see below subsect. 12.5). Second, it implies that the expansions which we will derive cannot, 
in a sense, be improved upon. 

5.3 Regularization. 

It is often convenient to introduce a regularization into both sides of (5.1). We assume that it 
is controlled by a parameter e, and taking it off corresponds to c + 0. Denote the regularized 
version of the distribution f as {f}‘, so that 

f(P) = !$ u(P))L 

on each test function ‘p. Then instead of (5.1), one can write 

{F(P, n)Y =, c~“{Fvx(~, 6))‘. 
n 

(5.4) 

We stress that the expression (5.5) need not be a true asymptotic expansion for E # 0, but must 
only become such upon taking the limit c -+ 0. Still, the dimensionally regularized expansions 
that we obtain for the standard Feynman integrands are asymptotic ones even for c # 0. This 
peculiar fact, however, seems to have no practical implications. 
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Within the dimensional regularization, (5.3) should be modified. Indeed, the dependence 
on n takes the form 

{Fn(p, n)lL = ~~“{~~,Jc, 
id 

which will also be qualified as soft. 

(5.6) 

An important fact is that although the expansion (5.6) as a whole does have a well-defined 
finite limit at e -+ 0 by construction, the quantities {F,$(p)}‘, in general, do not: if one in- 
tegrates such an object with a test function then the resulting expression will contain pole 
singularities as E + 0. It is, of course, always possible to rearrange the r.h.s. in such a way as 
to make each term have a finite limit at E -+ 0. To this end it is sufficient to form special linear 
combinations of the braced expressions. However, such a representation is of little practical 
interest, at least as long as one stays within the calculational framework of dimensional regular- 
ization and perturbative QFT. This is because in applications one has to perform calculations 
not with individual diagrams but with their sums. Summations over full sets of relevant dia- 
grams result in considerable cancellations between them, especially in gauge models like &CD, 
so that the efforts spent on separate treatment of individual diagrams will be lost. On the other 
hand, there exist formulae [14] connecting the phenomenological quantities that one needs to 
calculate in the final respect, with the corresponding full sums of diagrams. Such formulae are 
compact and, as experience shows [28], very convenient, which explains our use of expansions 
in the dimensionally regularized form. 

5.4 K-dependent test functions. 

As is clear from the motivations presented in subsect. 4.1, “natural” test functions that emerge 
after localization of the expansion problem, depend on the expansion parameter n, so that a 
typical problem is to expand expressions like 

I ~PvP(P, ~1 F(P, ~1. 

Under certain conditions the expansion of (5.7) can be obtained by substit,uting the expansion 
(5.1) for F and a similar expansion for (o and reordering the terms in the product in ascending 
powers of n. There are two such conditions [20]. 

(i) The first one is of little practical significance and is included for completeness’ sake. 
Both F(p, K) and all F,(p, K) must be distributions in the precise meaning of the word, i.e. (a) 
be linear functionals defined on all Schwartz test functions and (b) possess certain properties 
of continuity. However, there is no practical chance to encounter a functional satisfying (a) but 
not (b), as such functionals can only be proved to exist, by making use of the notorious Axiom 
of Choice, outside the realm of practical mathematics. There would be no need to mention 
(b), but there has not yet been enough time for the alternative Axiom of Determination due to 
Myczelsky and Steinhaus (see e.g. [SZ]) to purge the mathematical textbooks of pathological 
counterexamples. 

(G) The really important condition imposes restrictions on the asymptotic expansion of the 



6 THE EXTENSION PRINCIPLE. 27 

test function. Namely, if ‘p is expanded as 

ip(P, K) N c nn V”(P, 6) 
n 

(where the dependence of rp,(p, K) on n is soft, as in (5.3)), then the expression 

bfJ(P> K) - nlN 6” %(Pl K)l/KN (5.9) 

should tend to zero as K --t 0 in the following sense. The expression in the square brackets 
must be non-zero only within a compact region K of the integration space for all n # 0; the 
expression (5.9), as well as its derivatives in p, must tend to zero uniformly with respect to p. 

For the Euclidean expansion problem within the standard perturbation theory one has to 
consider only n-dependent test functions of the form (cf. (7.41)) 

rp(P, 6) = 4(P) f(P, n), (5.10) 

where t/~(p) is a Schwartz test function, while f(p, tt) is a rational function of p and n and such 
that all its singularities are localized at points p where $(p) = 0, for all n. It is not difficult to 
understand that for such ~(p, K) condition (G) is satisfied. 

6 The extension principle. 

Having developed a suitable language, we can turn to the expansion problem proper. Our pur- 
pose now is to offer a very general and abstract framework for studying asymptotic expansions 
of distributions. We will introduce some notions and present simple but important propositions 
under a general heading of eztension principle which constitutes, essentially, a context in which 
to work with explicit problems. To make it work for a particular problem, specific estimates 
and bounds must be established, which may technically be the most cumbersome part of the 
problem. But the importance of the conceptual framework of the extension principle consists 
in the fact that it allows one to guess the structure of the expansions to be obtained, shows 
what kind of estimates are required, and is, therefore, a powerful heuristic tool. 

6.1 Motivations. 

Let F(~,K) be a distributions in p E P (where P is a Euclidean space) depending on the 
expansion parameter K. For simplicity assume that F(p, ) h: is an integrable function of p for 
all K # 0. 

A typical situation which we will have to deal with can be described as follows. One can 
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obtain (e.g. using the Taylor theorem) an approximationr4 

F(P, K) *z. FN(P, K) + obN), (6.1) 

where F&&K) is an integrable function for p E 0 where 0 is an open region in P, and has 
non-integrable singularities at the points from P\O; the notation” o(~~) stands for the terms 
that vanish faster than kN as n + 0. Suppose that the expansion (6.1) is such that it is valid 
pointwise for each fixed p E S, and allows termwise integration with arbitrary test functions 
localized within 0. It is required to obtain an approximation for F(~,K) to the same order 
o(aN) valid in the sense of the distribution theory on the entire P. 

Let us look at the problem from a different angle. Let L be the vector space of all test 
functions q(p), p E P, and IN the set of the test functions ‘p localized within 0. LN forms a 
vector subspace in L. The distribution F(p, a) is, by definition, a linear functional on L, which 
we wiil denote as F,. On the other hand, pN(p, K) generates a linear functional F*,N defined 
on IN, and the restriction of Fs to LN can be approximated as 

P’&, .zo F6.N + ‘-‘(KN), (64 

which is to be understood so that (6.2) should be valid in the usual sense if one evaluates both 
sides of (6.2) on arbitrary vectors ‘p E IN. The problem is to construct an approximation 

F, ,2, F..N + O(nN), (6.3) 

which would be valid on the entire L. Therefore, one can say that the problem consists in 
extending the approximating functional defined on the subspace onto the entire space in such 
a way as to preserve its approximation properties. Its solution is provided by the so-called 
eztensions principle [12] .rs 

6.2 The extension principle. 

Let L be a linear space and F, a linear functional on it which depends on the expansion 
parameter n. Assume there exists a subspace LN C L and a functional FK,N defined on LN, 
such that ~,QJ approximates F, to order o(~~) on LN. More precisely, for each p E LN 

<F, - Fs,N,p> = O(K~). (6.4) 

141n this section we consider not full asymptotic expansions, but approximations to a given order o(C), 
Transition to infinite asymptotic series can also be treated in an abstract manner but there is not much wisdom 
to be gained from it, so we postpone the discussion of this point till the next section where an example is 
analyzed in detail. 

“The more familiar notation O(xN) is often used in theoretical physics to denote terms behaving as P?‘, 
possibly with logarithmic corrections. Note that a priori we can say nothing about the behaviour of the 
remainder of the full expansion we wish to construct except that it should vanish faster then the last term 
retained. That is why the +notation is preferable to the O-notation in our case. 

‘Boer extension principle belongs to the Hahn-Banach type results. The classical Hahn-Banach theorem 
(see any textbook on functional analysis) considers extension of function& preserving the property of being 
bounded by a seminorm. In our case, the extensions should preserve the approximation property. 
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We wish to construct a functional F,QJ defined and approximating F, to order o(K~) on the 
entire L, and coinciding with FK,~ on L. 

To this end, let ‘pa be a set of vectors transverse to LN and such that each 9 E L can be 
uniquely expanded as 

v==kk,(o,+% (6.5) 

where 9 E LN. It is sufficient to define F,QV on 9a, because on 9 its value is known. Now, the 
desired definition is: 

<Fs,N, rp,> = <Fs,9P,> + o(nN), (6.6) 

where we have indicated that the definition allows an arbitrariness of order o(nN), which should 
not be surprising. 

It is not difficult to check that F&,N thus defined is unique within accuracy o(~~). 

6.3 Counterterms and consistency conditions. 

The above construction can be represented as the following two-step procedure. Suppose it is 
possible to find an extension FEN of pX,N from LN onto the entire L, which does not necessarily 
approximate F. on L but has, perhaps, some other nice properties. Let ~50 be a set of functionals 
on L such that 

<so, ‘p> = 0, for all 9 E LN, (6.7) 

and 

+> Qpo> = &,o (the Kronecker symbol). P3.8) 

(Instead of (68), one can simply require that SD be a maximal linearly independent set of 
functionals satisfying (6.7).) Then Fnp should be representable as 

F r.N = F;N + c c:( Kc)&, (6.9) 
OI 

where c(n) are unknown coefficients. F-,N thus defined reduces to F*,N on each 9 E LN, so 
owing to (6.4) it is sufficient to require that (6.9) approximate F, to o(K”) on each ‘p. : 

<[F, - FI,~],'pa> = o(K~). (6.10) 

This consislency condition [12], [15] II a ows one to find the unknown coefficients in (6.9): 

6%) = c[F, - p$,‘pa> + o(!cN). 

It is not difficult to check the equivalence of this construction and that of subsect. 6.2. Note 
that the recipe (6.9) is more in the spirit of the distribution theory, for one can find a correct 
form of the required extension (6.9), up to some coefficients, practically without reference to 
test functions that only make their appearance in the consistency conditions (6.10). 
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6.4 Remark. 

Assume that (pm in (6.10) depend on a parameter A without violating (6.8): (pm = Q!, and 
assume that there exists a finite limit: 

ii&< [K - p$,] IQ:> (6.12) 

even if Q: itself does not converge to any vector in L. Now, if performing the limit A -+ cc 
does not take one outside the o(K~) uncertainty, i.e. if the limiting value (6.12) and 

<[~.-C$],9t> (6.13) 

are o(K~), then instead of (6.11) one may take: 

C:(K) = i+im<[F, -FIN] ,9:> +o(nN). (6.14) 

The option to take such limits proves to be very important-see below subsect. 7.5. 

6.5 Regularized form of the extension principle. 

There is a third way to represent the extended approximating functional P+!, which will be 
widely used in what follows. Define a regularization of Fs,N, i.e. a functional F:,, defined on the 
entire L which depends on an additional regulariration parameter c and such that Fi,N + FK,N 
on LN 8.9 e -+ 0, i.e. 

&< [F&v - ps,,,] , p> = 0, for each 9 E LN, 

It is easy to check that the definition (6.9) can now be rewritten as 

Fs,~ = & F~,N + CC:(K)& + o(K~), 
OI 1 

where 
C:(K) = <[F, -&] ,9p> +O(KN). 

Here one can also use parameterized sequences of 9, as in (6.14). 

(6.15) 

(6.16) 

(6.17) 

6.6 Summary. 

The procedure of constructing an approximating functional now is as follows. One has the 
linear functional F, on L which is to be expanded in n, and one is given another functional 

F&N which approximates F, to a given accuracy on many but not all vectors from L. The 
key point is to identify the maximal subspace LN on which F-,N approximates F,. After this 
is done, the rest consists essentially in adding to PK,N a linear combination of functionals 6, 
which vanish on LN, with coefficients determined by the consistency conditions. 

In the context of subsect. 6.1, the fact that So, must be zero on LN can be interpreted as 
that the corresponding distributions are localized in the complement P\O of the open set 0. 

Let us now turn to an example. 
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7 Example: expansion of (p2 + tc2)-l. 

The abstract considerations of the previous section provide us with a general approach to 
constructing expansions of distributions. Now we wish to show how it works in practice. There 
are also some important details--e.g. the transition from approximations to a given order to 
full asymptotic expansions-which can be more conveniently explained using an example. 

7.1 Formal expansion. 

Let P be a 4-dimensional Euclidean space; its elements will be denoted as p. Consider the scalar 
propagator 

Fb, 6) = 
pz: d’ 

(7.1) 

We wish to obtain its expansion for 6 + 0 valid in the sense of the distribution theory. 

First consider the formal expansion to order o(2) : 

1 

pz + K2 
= $ - 2; + o(2). 

It holds pointwise for any p # 0. Moreover, it allows integration with any test function which 
is equal to zero in some small neighbourhood of p = 0. But most important is that although it 
does not allow integrations with arbitrary test functions owing to the non-integrable singularity 
in the O(n2) term on the r.h.s., still it allows integration with test functions p which only 
satisfy the condition ~(0) = 0, apparently because then p(p) N p, p + 0, and the singularity 
is effectively suppressed. 

7.2 Approximation properties of the formal expansion. 

More precisely, one has to prove that 

Jd”p@(p) [p2 : K2 - -j + 2; = o(2). ] 
The simplest way” to do this is as follows. One splits the integral as 

J = JCp,<cs+L,>cn. 

(7.3) 

(7.4) 

For IpI < CK, one rescales p ---t np, uses the scaling properties of the bracketed expression and 
the fact that p(p) N p, p + 0, and finds that 

J (p,<cri - O(f4 = 4a (7.5) 

“pointed out by S.Yu.Khlebnikov 
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For Ipj > cn, one uses the Taylor theorem to estimate the bracketed expression by an expression 
similar to the first discarded term in (7.2), namely, const x n4/p6, estimates 9(p) by const x IpI 
and integrates over ch: < IpI < M < +co where M depends on 9. The result is 

J ,p,>c(I - O(n4 log 6) = O(K”). 

The desired result (7.3) follows immediately from (7.4)(7.6). 

(7.6) 

We have discussed the proof in detail because the same steps are performed in the most 
general case as well. 

Now we are going first to implement the recipe of subsect. 6.3. After this is done, we will 
cast the results into a regularized form corresponding to subsect. 6.4, using the dimensional 
regularization. 

7.3 Intermediate operation k. 

Before proceeding further, let us construct a distribution &-“I defined on all test functions 
and such that the equality 

(7.7) 

be valid on the test functions 9 defined above. An explicit expression for such a distribution 
can be found, if one fixes any one test function $(p) such that 4(O) = 1, and integrates both 
sides of (7.7) with 9(p) -9(0)$(p). Then one finds: 

J4 -[‘I J4(’ d PR p4 Q(P) = d P p4 [9(p) -Q(o)+(P)] + Cam > 
I 

where 

(7.9) 

is a single constant to be fixed-which can be done arbitrarily-in order that l%[p-“1 were fully 
defined. Introducing a regularization into the r.h.s. of (7.8), one gets a representation of fiLlpm4] 
“in terms of infinite counterterms”: 

fq;] =!,[{g+zJ(P)], 

where {. . .}’ denotes the regularization, e.g. 

1 1 I c 1 1 C 
a =- or 
P p4 + 64 ’ I 1 

7 
P 

= @(IpI > e)$ etc., 

where we have introduced a convenient function 

(7.10) 

Q(z) 3 1, if the logical expression z is “true”, (7.12) 
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0, otherwise. 

It might be helpful to note that the distribution R(pe4] d e ne a eve is similar to the so-called fi d b 
“+“-distribution, 

J0’9(~)[~]+d~~~‘~~(~)~~(~)~dx, 

which is widely used in the QCD parton model calculations. 

(7.13) 

7.4 Consistency condition. 

According to the recipe of subsect. 6.3, we should first redefine the r.h.s. of (7.2) in such? way 
as to make it well-defined on all test functions. To this end we replace pe4 in (7.2) by R[pe4] 
without changing values of the r.h.s. on 9, and obtain an expression 

1 

PZ + 62 
=A-.% -j +0(2), 

PZ [ 1 
which holds, as (7.2), on @, but unlike (7.2), the r.h.s. is well-defined on all 9(p). 

The only distribution that can be added to the r.h.s. of (7.14) without violating the ssymp- 
totic character of (7.14) on ~8 is 6(p). The immediate conclusion is that the expansion of 
(p2 + ns)-’ to order o(K’) in the sense of the distribution theory can only have the form 

1 

pz + KZ 
= + - n2ii -$ + c~(+qp) + O(2), [ 1 (7.15) 

and is defined up to a single numeric-valued (non-analytic) function of n, &K). 

In order to determine g(n), recall the prescription of subsect. 6.3. One notes that any 
test function Q(P) can be represented as 

9(P) = Q(o)+(P) + p(P)> (7.16) 

where r/~(p) has already been defined and p(O) = 0. 0 n such lp (7.15) degenerates into (7.2) 
and, therefore, is valid. Hence, in order that (7.15) b e valid on all test functions, one only 
has to ensure that it holds on $(p). L e us take this as a definition of C(K) (a “consistency t 
condition”, cf. (6.10)). Then, integrating both sides of (7.15) with +(p), one gets: 

C,“(K) = / d4p+(p) 1 p2 1 K2 - + + A. [+,I) + o(4. 

Note that $(K) is determined at this stage only up to o(K’). This agrees with the fact that 
$ has been chosen arbitrarily, because a change in li, preserving the condition 4(O) = 1 will 
change C:(K) by a term of order o(K’). 
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7.5 Dependence of counterterms on IL 

Although eqs.(7.15), (7.17) provide a correct expansion of the propagator in the sense of the 
distribution theory to o(K*), one further important refinement is possible in the spirit of sub- 
sect. 6.4. It is natural to try to find a $(p) such that would simplify (7.17) as much as possible. 
To this end, notice that the square-bracketed expression in (7.17) is bounded by const x n4/ps 
at p + 00. Therefore, C’(K) will be changed by a finite ~(a’) contribution if one simply takes 
4(p) = 1. More precisely, let g(p) = @(p/A) and let A -+ co. The resulting expression for 
c$(K) is: 

~(k)=/~P{p*~k*-5+r2R[~]}. (7.18) 

The distribution Ei[p-“] has a simple scaling behaviour: 

F( Xp) = Xe4 [F(p) + const x log X 6(p)] (7.19) 

(which can be easily deduced from the definition (7.8)). Therefore, replacing p + ‘cp in (7.18) 
and using (7.19), one gets: 

$(K) = d [K1 + Kz log K] , (7.20) 

where Ki and IC, are constants independent of K. The fact of a simple dependence of G(K) as 
defined in (7.18) on 6 singles out this definition from the family (7.17). 

7.6 The remainder. 

Another way to check the validity of the expansion (7.15) with C:(K) given by (7.18), is to 
notice that the remainder can be represented as: 

- $ +n*lx -$ [I -&K)S(P) 

= J d4p [V(P) - 491 &F - $ + $ 

(By the way, this representation verifies that the r.h.s. of (7.15) is independent of the arbitrary 
constant in the definition of fit[p-“1 (7.8).) 

To check that the r.h.s. is o(?) one splits the integration region into two subregions: Ipl < 
Kn and IpI > Klc with K appropriately chosen. For the first subregion one represents p(p) - 

~(0) as Cp$i(p) where all @i(P) are smooth everywhere including p = 0 [63], and then performs 
the scaling p + np. In the second region, one bounds the first factor in the integrand on the 
r.h.s. by a constant, and uses the Taylor theorem to estimate the second factor. Then one easily 
obtains the desired estimate. (For more details see [20].) 
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7.7 IR counterterms as UV renormalized integrals. 

Let us discuss the expression (7.18). Introduce again the cut-off @(p/h) explicitly into the 
integrand of (7.18). Then one can rewrite (7.18) as: 

&K) = pir {J @P 
1 

IPId P2 + .l 
- K;A' - tc2 (I(:: + K; log A) 

I 
, (7.22) 

and the limit is finite by construction. 

The first term on the r.h.s. is the vacuum average of the operator 2$‘(z)] (without normal 
ordering), while the rest play the role of its UV counterterms. 

We take note of this fact for two reasons. First, the coefficients of IR counterterms analogous 
to C$ in more complicated cases will also admit simple interpretation as contributions to Green 
functions with local operator insertions. Second, reversing the course of thought, one can view 
(7.18) as a peculiaris representation of an UV-renormalized one-loop Feynman graph in terms of 
subtraction of asymptotics of the integrand at large integration momenta. Such a representation 
will play an important role in our further study of EA-expansions, effectively reducing the case 
of UV-divergent diagrams to that of UV-convergent ones (cf. below subsect. 8.3 and [21]). 

7.8 Dimensionally regularized form. 

The form (7.15), (7.18) for the expansion is not the only one possible, and, definitely, not the 
most convenient one. If one uses a regularization, then, taking into account (7.18), one has the 
following expression instead of (7.15) and (7.18): 

where 

C:(K) =/b p2: K2 --j + tcz -j 1 
L 

1 11 

(7.23) 

Much simpler expressions emerge within the dimensional regularization. (Note that in this 
case one regularizes also the expression to be expanded as well as those terms of the expansion 
which actually do not need to be regularized, but this can do no harm. For simplicity of 
notation we will omit the limit signs.) Thus, instead of (7.23)-(7.24) one gets: 

where 

1 

p2 + K2 
= -j - K2-$ + co(n)J(p) + o(n2), 

c&)=/d‘% P2;n2 -$+li2$ = 
1 1 J dDpP21K2 

“or natural-depending on one’s prejudices. 
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(we take E = (4-D)/2). The terms on the r.h.s. vanished owing to the fact that the dimensional 
regularization preserves the formal scale invariance, so that e.g. 

J dDp&=+p4p4D-2” 
P J dDp-t =O. 

P2R 

Another consequence of this fact is: 

co(K) = (n2y2-l co(l), 

(7.27) 

i.e. the dependence on n takes the form discussed in subsect. 5.3. 

Of the three forms of the expansion ((7.15) and (7.18); (7.22) and (7.23); (7.25) and (7.26)), 
the most important are: the first one since it does not use artificial regularizations and con- 
tains only explicitly convergent terms, and the third one which owing to its simplicity is most 
convenient in applications. Note, however, that the representation in terms of dimensional 
regularization (7.25), (7.26) is not devoid of some mysticism: indeed, the IR divergence of the 
term pe4 on the r.h.s. of (7.25) IS compensated by a divergent part of CO(K) which, judging from 
the r.h.s. of (7.26), has an UV origin. However, one should firmly remember that that is due to 
the fact that the dimensional regularization nullifies certain types of integrals (cf. (7.27)) and 
formally preserves scale invariance which establishes a connection between IR and UV contri- 
butions. Therefore, it becomes possible for an expression to contain both types of divergences 
balanced so as to render the whole finite. In more conventional regularizations there occur only 
compensations of divergences of the same nature (cf. [22]). 

7.9 Complete expansion. 

Now let us turn to higher terms in the expansion (7.15). To derive them, instead of following 
the recipe of the extension principle, we will use a trick motivated by the representation of the 
remainder of the expansion in the form of (7.21).” Th e a d vantage of it is that it provides a 
short-cut for the reader familiar with the dimensional regularization to arrive at the final for- 
mulae. However, this trick cannot be extended to more complicated situations of Minkowskian 
asymptotic regimes. 

Consider the expression 

J d4p4p)%) = 4~~~1, (7.29) 

A(P) = pz : K2 -fJ-K2,“p& 

B(P) = 4~) - Two?(~), (7.31) 

WN = 2(N - l), (7.32) 

19An essentially similar trick was used in [39] 
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and 

T,,cp(p) = Igo $d”‘(o) (7.33) 

is a partial Taylor series. The expression (7.29) will turn out to be the remainder of an expansion 
to order o(~‘“). 

The fact that the r.h.s. of (7.29) 1s indeed o(~‘~) can be explained as follows. B(p) is 
O(pwNtl) at p + 0 and O(pW~) at p -t co, and is independent of n. A(p) is o(~‘~) for p # 0, 
has a non-integrable singularity O(P~/(~+‘)) at p -+ 0, and is bounded by O(t~~~(~+‘)/p*(~+~)) 
at p + co. One can see that the non-integrable singularity of A(p) at p --t 0 is suppressed by 
B(p), while the growth of B(p) at p -+ co is not rapid enough to spoil integrability of A(p) at 
infinity. A more formal proof proceeds along the lines of subsect. 7.6. 

There are two remarks worth making here. First, the interplay of asymptotics in (7.29) is 
only possible owing to the uniformity of (p’ + n*)-l with respect to simultaneous scaling in p 
and n. Second, the expression on the 1.h.s. of (7.29) contains no cut-offs, and is therefore devoid 
of arbitrariness. 

To represent the final result in a more convenient form, introduce a full basis of homogeneous 
polynomials Pa(p), such that 

Pm(XP) = X’“‘Pa(P), (7.34) 

and the dual set of derivatives of the &function : 

J dDpP&Vdp) = &P (7.35) 

(cf. (6.8)). Then the Taylor expansion can be represented as: 

Twlp(p) = ,&R(P) [/&‘~~(P%(P’)] (7.36) 

For the example under consideration, one can take 

Pm(P) + PZP, 

owing to the O(D)-invariance. 

6,(p) ---) a’yp), a = 0, 1,2.. . ( (7.37) 

Finally, introduce the dimensional regularization into the (convergent) expression on the 
1.h.s. of (7.29). Then integrate it using (7.27). Simple transformations using (7.36) lead to the 
following final result, wherein I dDpp(p) h as b een omitted from both sides: 

where 

p2 : d = g (-n2Y p&r) + ,a& Cd~)&(P) + o(P), 

c,(n) = JdDppc,(p) p2: .2 = ~~-~+‘~‘ccx(l), 

(7.38) 

(7.39) 
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and WN is given by (7.32). One can easily find from (7.39), which order in n each counterterm 
belongs to, and one can see that the additional dependence on n in each order in n is soft in 
the sense of subsect. 5.3. 

To avoid misunderstanding, we stress once more that the expansion (7.38) is to be un- 
derstood in the following sense (cf. the remarks in subsect. 5.3). One should first integrate 
both sides termwise against a test function, and take off the regularization (i.e. take the limit 
D -+ 4). The resulting expression will represent a correct expansion of a n-dependent function 
in powers and logarithms of IC to order o(K’~). 

Concerning cancellations of the IR divergences in the first sum on the r.h.s. of (7.38) by the 
apparently UV divergent expressions in (7.39), see the end of subsect. 7.8. 

Note also that (7.38) is a true infinite asymptotic expansion of (p’ + K*)-i in the sense of 
distributions, and after the regularization is taken off, one only has powers and logarithms of 
n on the r.h.s. of (7.38), and such an expansion is unique (cf. subsect. 5.2). 

7.10 Several K-dependent factors. 

Let us consider an example with several factors, such that the singularities of their expansions 
are located at different points. For example, consider the following integrand corresponding to 
a self-energy contribution: 4 

(P* : 4 x [(p - Q) + is’]. 
(7.40) 

We regard the external momentum Q as a heavy parameter and fix it at a non-zero value, 
which corresponds to the simplified version of the expansion problem without contact terms 
(subsect. 3.5). The final recipe for expanding (7.40) in th e sense of distributions will be 
to simply multiply the expansions for the two factors. But the reasoning behind it is more 
instructive than the result itself (cf. a similar reasoning in a more complicated case below in 
subsects.13.2 and 13.3). 

The key observation here is that the expansion of the second factor is regular around the 
singular point of the first factor; more precisely, if ‘pi is such that it is equal to zero around the 
singular part of the second factor, then the n-dependent test function 

%(P, 6) = n(p) (p _ Q;2 + $ 

satisfies the condition (ii) of subsect. 5.4. Therefore, one can formally expand $+ and use 
(7.38) for (p’ + n2)-i, and we conclude that for p # Q, the expansion of (7.40) is given by the 
Taylor expansion of the second factor times the full expansion of the first factor. Swapping the 
factors and considering test functions ‘ps which are identically zero around the singular point of 
the first factor, we arrive at a similar conclusion. The final observation is that since the singular 
points of the two factors are separated, any q(p) can be represented as cpl(p) + qpz(p), whence 
the desired result can be easily deduced. (Another way to see it is to notice that products of 
&functions from expansions of the two products result in zeros.) 
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To summarize, we have demonstrated with a simple example how the ideas of the extension 
principle discussed in the precedent section work in practice. We have also demonstrated a 
short-cut way to derive our final result, the expansion (7.38), re resented in the dimensionally p 
regularized form. It can be represented in an explicitly finite form with the regularization taken 
off (for more on this see [ZO]), but the form (7.38) is more convenient for our purposes. 

8 Applications to one-loop integrals. 

The results of the previous sections can now be applied to one-loop integrals. We first consider 
the UV-convergent case, and then show how the case of UV-divergent MS-renormalized integrals 
can be reduced, essentially, to the convergent case. The most important non-technical element 
of our reasoning is a new definition of the MS-scheme in terms of subtractions of UV-asymptotic 
part directly from the integrand, prior to any momentum integrations (subsect. 8.4 and [21]). 

8.1 UV-convergent one-loop integral. 

Consider the following UV-convergent one-loop integral: 

/ 6 
1 1 

pZ+nZ x (pZ+~z)2’ 

One would expect (we discuss this in more detail below) that although the “test function” 
(p” + ?)-s is not a true Schwartz test function, its decrease at p -+ co is sufficiently rapid 
to allow one to substitute the expansion (7.38) for (p’ + K*)-i into (8.1) in order to get the 
asymptotic expansion for K -+ 0 of the integral (8.1) as a whole. Doing this and integrating 
the h-functions, one obtains: 

dDp$ x 
1 

- dDp $ x 
I 

1 

(p’ + M2)’ (p* + M2)* 

The validity of (8.2) can be easily checked by explicit integrations, 

In order to make connection with what follows, let us briefly discuss why the rapid decrease 
of the “test function” (p’ + M’)-* in (8.1) allows one to substitute (7.38) directly into (8.1). 
By definition, integrations over infinite regions involve a limiting procedure. Let us make it 
explicit in (8.1). Take a smooth function H(p) such that 

H(P) = 1, for IPI < 1, (8.3) 

0, for IpI > 2. 

We can introduce the cut-off H(p/A) into (8.1): 

dip (8.4) 
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Now it is fully correct to use (7.38) m order to expand the expression under the limit sign 
to order, say, o(?). Then one has to check that (i) the limit A + co exists for each term of the 
expansion of (pz + K’)-’ and (G) the remainder which was o(~‘) prior to taking limit will be 
o(K’) after it. While (i) is obvious, to check (ii) one can recall the representation (7.29) of the 
remainder term. The desired result easily follows therefrom, moreover, the proof here closely 
repeats the reasoning of the paragraph after (7.3). 

The conclusion is that for absolutely convergent l-loop integrals the asymptotic expansions 
are obtained by substituting the expansions in the sense of the distribution theory into the 
integrand, and then performing termwise integrations over the loop momentum. 

8.2 Separation of UV and IR divergences. 

A remark is in order here. The expansion (8.2) contains two terms that diverge as D -+ 4 : the 
second integral is logarithmically divergent for p + 0, and the third one, for p + co. However, 
by construction, the expansion as a whole is finite as D + 4. Therefore, the divergences must 
cancel. But the peculiar feature of (8.2) is that one divergence occurs in a n-dependent integral, 
while the other one in an integral depending on M but not on K. This is not satisfactory because 
in the final respect in applications one has to deal with finite functions of n and M. 

As we have already noted, all our expansions can be represented in an explicitly convergent 
form which makes no use of the dimensional regularization, but this requires a special techniques 
(see [20]). However, it is still possible to rearrange (8.2) in terms of K- and M-dependent 
contributions which are separately finite, by using only notions known to the practitioners 
of perturbative QFT who are familiar with the techniques of UV renormalization within the 
MS-scheme. The price to be paid for this is that IR divergences will be canceled by UV 
counterterms, but we have already explained in subsect. 7.4 why such things can happen. 

Look at the third integral on the r.h.s. of (8.2). It is an UV divergent l-loop Feynman 
integral which can be made finite by adding an UV counterterm which can be evaluated e.g. 
in the MS-scheme. Such UV counterterms are polynomials in masses and external momenta, 
and in our case can be taken in the form: 

where p is introduced to preserve dimensionality (cf. (8.9) below). Now, using (8.5), the 
expansion (8.2) can be identically rewritten as: 

eq.(8.1) = lim dDp-$ x 
1 

D-4 (p” + M2)2 1 
-K2 [J dDp$ x 

1 const x pDe4 

(p” + M*)’ + M4(D - 4) 1 

1 1 
+J@ dDp -I 

n*const x pDd4 

p2 + ix* D-4 + ‘J(K”). 
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Since the first and third square-bracketed terms as well as the expression as a whole are finite 
in the limit D -+ 4, so finite must be the second term too, which is not difficult to verify by 
explicit calculations. 

Note that by resealing the integration variables, one can exhibit the dependence of various 
terms in (8.6) on n and M : 

eq4.W = & /@pi x cp2 : 1j2 

1 
(8.7) 

We stress once more that the numerical connection of the UV counterterm in the third term 
and the counterterm in the second term, whose role is to cancel the IR divergence,-this 
connection can be traced back to the fact that the dimensional regularization nullifies certain 
integrals containing both IR and UV divergences simultaneously. One could pursue the topic 
further and analyze such cancellations more explicitly, but as the relevant formulae are quite 
complicated while the results perfectly useless, we stop here. 

To conclude, we have demonstrated a trick for recasting expansions that emerge from our 
methods into an explicitly convergent form. The trick employs specific properties of UV renor- 
malization of Feynman integrals, and can be generalized to the multiloop case where it takes 
the form of an inversion of the R-operation [16]-[18]. 

8.3 UV divergent one-loop integrals. 

Let us now turn to UV divergent one-loop integrals, e.g. 

J d4p 1 1 

p2 + K2 
X 

pZ+M2. 

Its MS-renormalized version which we wish to expand in n, is: 

1 1 2 

‘p2$M2 
D-4 _ - 

pz + K2 D-4’ ’ 1 
where z is a numerical constant and p is ‘t Hooft’s unit of mass which plays the role of the 
subtraction parameter in the MS-scheme. 

Our purpose is to show that the expansion (7.25) (and th e more general expansion (7.38)) 
can be directly~substituted into the integral in (8.9) in order to get the asymptotic expansion for 
(8.9). (Correctness of this recipe can also be checked by explicit calculations.) The motivation 
comes from the fact that the divergent contribution to the integral in (8.9) is generated by the 
asymptotics of the integrand at p -+ co, while replacing (p’+ K*)-’ by its expansion leaves that 
asymptotics intact. These heuristic arguments can be formalized in the following way. 
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The crucial step is to redefine the MS-subtraction in (8.9) in a manner independent of 
dimensional regularization (because the expression (8.9) d oes not allow one to apply the rea- 
soning like that in subsect. 8.1). To th is end recall (subsect. 7.7) that a subtraction of large-p 
asymptotics from the integrand is equivalent to UV renormalization. One has: 

l x l 
1 

ps + fez pZ+MZ 
N T> 

P+-J P 

(K, M + 0) 

so that subtracting pe4 from the integrand in (8.9) would produce an UV convergent integral. 
However, p-” is ill-defined at p = 0. Let us modify it at p = 0 so as to ensure its integrability: 

lR 1 2’ [ 1 a =-i P P +D-4’ 
- “-“a(p) (8.11) 

(cf. (7.10)). z’ in (8.11) is a numeric constant, and the parameter p has the dimension of mass 
and is introduced to preserve dimensionality. 

Now, the expression 

1 1 

p2 + K2 
X 

p* + M* 

is finite at D = 4 both at p -+ 0 and p + co. Owing to (7.27), it can be represented as: 

/ 
dD l x l 

t ’ 
p 2 

D-4 -- 

p i-K2 pz+MZ D-4’ 

(8.12) 

Recall that the constant z in (8.9) was chosen solely from the requirement of finiteness of 
(8.9). Hence, comparing (8.9) and (8.13) we see that z = a’, and eq.(8.9) = eq.(8.12). Finally, 
recall that the distribution (8.11) can be represented as (7.8) with a suitably chosen c, and no 
regularization is used in (7.8). Therefore: 

(8.9) = J&J { 
pz : ~2 x pz ; MZ - $ R 

[II 
. 

So, we have represented the MS-renormalized integral (8.9) in the form of an integral over p 
of the expression which differs from the original integrand (8.8) by a contribution independent 
of n. 

Further reasoning presents no problems, as the representation (8.14) allows one to use the 
arguments of subsect. 8.1 with only inessential modifications in order to obtain the expansion 
in n. We leave it to an interested reader to check that the final result is such as if we had 
substituted the expansion (7.38) directly into (8.9). 

The method for recasting the expansion into an explicitly convergent form described in 
subsect. 8.2 is also applicable here. 
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8.4 Generalized MS-schemes. 

Now consider the following definition of a class of subtractions schemes. (It is shown elsewhere 
that this definition works in the case of multiloop Feynman integrals [21], [19].) Let F(p) be 
the integrand of a l-loop Feynman diagram. Evaluate its asymptotic expansion for p + co 
and discard the terms that are integrable at large p. Denote the result as F’(p). The terms in 
F”(p) that generate logarithmic divergences at p + co, also have a logarithmic singularity at 
p = 0, while the rest are integrable at that point. Redefine the logarithmically divergent terms 
at p = 0 similarly to (7.8), (7.10) to make them integrable at all finite p. Denote the result as 
[F”(p)lR. (Note that the redefinition should only affect powers of p and commute with other 
dimensional parameters; in particular, the constant c in (7.8) should be independent of the 
masses and external momenta of the diagram.) The renormalized integral is now defined as 

/ d4p {F(P) - F’“(P)~~) (8.15) 

It is easy to see (cf. the reasoning in subsect. 8.3) that the class of subtractions schemes thus 
defined includes the MS-scheme as a special case. Note also that the UV counterterms in these 
schemes are always polynomials in masses and external momenta of the diagram. 

To take an example, consider the integral that has already been encountered above in 
subsect. 7.7: 

J &P 
1 

pz+Kz’ 
(8.16) 

then 

F(P)=p2;K*C F”(p) = $ - A@, (8.17) 

and 

The renormalized integral is 

[F”(p)lR = $ - K2 [-$I”. (8.18) 

(8.19) 

Introducing the dimensional regularization into (8.19), using (8.11) and (7.27), we arrive at an 
expression, 

/ dDp 
1 z’ - D-4 

p* + K2 
+KaDe4P 9 

where t’ = cc + (D - 4)cr + . and ci are arbitrary finite constants, If c; = 6, i 2 I, one 
recovers the standard MS-scheme. 

8.5 Summary. 

The representation of the MS-renormalization as subtractions from the bare integrand of those 
terms from its asymptotics at large loop momentum which are responsible for UV divergences, 



allows one to reduce the problem of expansion of l-loop integrals to the UV convergent case. 
And the reasoning of the above sections shows that the correct expansion of the renormalized 
integrals can be obtained by direct substitution of the corresponding expansion in the sense of 
distributions in place of the n-dependent terms, and rearranging the resulting expression along 
the lines of subsect. 8.2, in order to obtain the expansion in an explicitly convergent form. 

In order to generalize this recipe to the multiloop case we need, first, to learn to expand 
more complicated products of singular functions (which is done in the present paper), second, 
to generalize the above treatment of UV-divergent integrals to the multiloop case [21], [19], and 
third, to generalize the rearrangement trick of subsect. 8.2 [16]-[18]. 

THE MASTER EXPANSION 

9 Notations for products of singular functions. 

Admittedly, multiloop Feynman diagrams are cumbersome objects. Nevertheless, the analytical 
aspects of the problem, say, of UV renormalization or the Euclidean expansion problem are 
by no means as complicated as one can imagine regarding them from the point of view of 
the traditional techniques prevailing in rigorous studies of perturbative QFT like e.g. the o- 
representation which completely destroys the essential multiplicative structures of Feynman 
integrands. However, to reveal the underlying simplicity and help one to ignore the plethora 
of irrelevant detail, a careful choice of notations is crucial. Below we describe such a system of 
notations (discussed in a more formalized manner in [20]) which does not make use of parametric 
representations and applies equally well to both scalar and non-scalar theories. 

9.1 Graphs and products. 

Let G be a Feynman graph. Its loop momenta pl,pz, . ,pi are always Euclidean vectors of 4 
dimensions. (For studying toy models and examples it is sometimes convenient to consider the 
2-dimensional case.) The loop momenta are combined into a single vector of 4 x 1 dimensions: 

P=(Pl,P*...Pr). (9.1) 

The variable p may also incorporate the heavy external momenta-see remark (iii), sub- 
sect. 4.2. In such a case 

p= (P1,P*...Pd1...), (9.2) 

where & are defined in subsect. 3.4. 

The integrand of the graph G in momentum representation is denoted as G(p). Dependence 
on other parameters can be shown with additional arguments after p. G(p) is a product of 

44 
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factors corresponding to both lines and vertices. The factors are numerated by the label g. The 
set of values of the label is denoted also as G. The use of the same symbol for three different but 
related entities should not be misleading. Similarly, it should not be misleading if we denote 
as g(p) that factor in the product G(p), w ic corresponds to the label g. So, h h 

G(P) = n g(P). (9.3) 
gEG 

We will also have to study subproducts of G. Let -y C G. Then 

Y(P) = II 9(P) 
!3E7 

and also 

G\-~P) = n g(p) = G(PMP) 
sEG\-i 

where G\r is the standard notation for the difference of sets. 

P-4) 

(9.5) 

9.2 Conventions for non-scalar factors. 

We allow each function g(p) to carry sub- (or super-) scripts: Lorentzian, SU(n) etc. Then 
the product (9.3) may contain implicit contractions. If, for example, the product (9.4) carries 
a pair of subscripts, which are contracted in (9.3), then this contraction is implied in (9.4) as 
well. 

Now, let r’ and I”’ be non-intersecting subproducts from G. In G there may exist such a 
pair of contracted subscripts that one of them belongs to I’, while the other one to Y”. Then 
the product 

r’(P) rw (9.6) 

implies contraction of such a pair. Furthermore, we will build new expressions from G by 
replacing some subproducts y by certain expressions, say, Z.,, so that 2, will carry exactly the 
same subscripts as 7. Then the products like 

r’ zrls, zrt zrt, etc. (9.7) 

imply the same contractions as (9.3). 

The implicit presence of such contractions will have no complicating effect on our reasoning 
as compared with the scalar case. 

9.3 Momentum dependence. 

Let us discuss the dependence of factors on p. One should distinguish factors of two types: 
those corresponding to lines and to vertices of Feynman graphs. 
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Let g correspond to a line. The momentum flowing through this line is a linear combination 
of various momentum variables of our problem: 

where Qg and kg are linear combinations of heavy and light external momenta from the sets Q 
and k. Then g(p) is a propagator depending on (9.8) and a mass. The mass may be light, i.e. 
equal to zero or proportional to n, or heavy, i.e. non-zero and independent of K. Since kg in (9.8) 
is proportional to n and will in fact play the role of an expansion parameter, it is convenient 
to introduce a notation for the non-vanishing part of (9.8): 

L,(p) G the parenthesised expression in (9.8). (9.9) 

Now one can write: 

g(p) = G&(p) + km 6). (9.10) 

In fact our arguments are true for a wide class of functions F,(L, K) including any standard 
perturbation theory propagators raised to integer powers and multiplied by polynomials of L. 

9.4 Assumptions on the properties of factors. 

Let us describe those properties of F,(L, K) that are essential for our theory. (For a formalized 
description see [20].) One should consider two cases: 

(i) The function F,(L,n) at L = n = 0 is regular (which corresponds to propagators with 
heavy masses). Then for K -+ 0, Fg is expanded into a series of functions which are smooth 
in L, and the expansion is uniform in L in any bounded region and allows arbitrary termwise 
differentiations in L. 

(ii) The function F,(L, K) at L = n = 0 is singular (which corresponds to propagators with 
a light mass). Here we assume that F,(L, K) has the following properties: 

(a) scaling: 
F,(XL,Xlc) = XdgFg(L, K); 

(b) asymptotic expansion at each L # 0 : 

F,(L, K) = c K”&,&), L # 0; 
n 

(c) all I;b,“(L) are smooth at L # 0 and have simple scaling properties: 

F&XL) = Ad,-“F,,,(L); 

(d) regularity properties: the expansion in (b) allows arbitrary termwise differentiations in 
L, and the remainder of the expansion to order O(nN) h as an upper bound of the form of the 
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modulo of the first discarded term: K“‘+‘]~[~~-~-~ (cf. property (c); also note that property (d) 
ensures that the n-dependent test functions that arise at intermediate steps of our reasoning 
will possess the properties described in subsect. 5.4). 

In case i/ii we will say that the factor is of regular/singular type, respectively. 

It should be stressed that the described properties are sufficient for our purposes and com- 
prise the problems within the standard perturbation theory. But our methods will work in a 
more general context, e.g. if the singular functions have logarithmic or power behaviour with a 
non-integer exponent. 

9.5 Factors corresponding to vertices. 

Now, let g correspond to a vertex of the graph. One can assume that g(p) is a uniform 
polynomial of momenta entering the vertex. There are three ways to include such factors into a 
common framework with lines. First, all vertex polynomials can be merged with test functions. 
Second, each vertex polynomial can be split so that each part may be included into one of 
the propagators attached to the vertex (such modifications of propagators are allowed by our 
definitions-see subsect. 9.4). The third way-which we prefer-consists in generalizing the 
notations introduced for lines: it is sufficient to allow L, to consist of several independent 
momentum components like (9.8), i.e.: 

cg,v,iPi + Qg.v 
“Gl,... 

(9.11) 

For convenience, we assume that, by definition, the vertex functions belong to the singular type 
(see subsect. 9.4 above). 

Equivalence of expansions obtained in all three cases follows from the uniqueness of the final 
result (subsect. 5.2). More explicitly, the equivalence can be checked using the property of the 
As-operation to commute with multiplications of the expression to be expanded by polynomials 
of p (see below subsect. 12.5). 

9.6 Summary. 

Let us summarize the entire scheme. The product (9.3) is defined on the space of the multi- 
component variable (9.11), and consists of factors of the form (9.10). The factors need not be 
scalar functions-the conventions of subsect. 9.2 are operative. The first argument in (9.10) 
is a set of momentum variables of the form (9.11). The functions Fg satisfy the conditions 
described in subsect. 9.4. Finally, the factors may be of two types-singular or regular (see 
the end of subsect. 9.4). 
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10 Formal expansions and IR subgraphs. 

An important element of our technique is classification of singularities of the formal (Taylor) 
expansions in n of the products (9.3). The key notion here is that of IR-subgraph, introduced 
in subsect. 10.2. Note that there are similarities between our Euclidean space classification of 
IR-singular points and the Minkowski space reasoning of Libby and Sterman [64]. 

10.1 Some notations. 

Denote the operation of formal expansion in K as T,. The expansion T,g is the same as the 
one described in property (b), subsect. 9.4, up to a replacement of the momentum variable. 
Then 

Tsdp, 6) = n Tdp, n), (10.1) 
geG 

and similarly for each subset y c G. The r.h.s. of (10.1) should be understood as a simple infinite 
series in integer powers of 6, obtained by formal multiplication of the series with reordering of 
terms. 

It is convenient to denote the operation of partial expansion up to terms O(nN) as T%,N. 
We will also omit the subscript indicating the expansion parameter as T, -+ T, T*,N + TN, 
if misunderstanding is excluded. 

10.2 Singularities of the formal expansion. 

Let us describe the structure of singularities of the formal expansion (10.1). Each factor of the 
singular type generates singularities at those points where Lg(p) = 0. We call the set of such 
points singular plane ofg and denote it as 

rg = {P I L, (PI = 01 . (10.2) 

Now consider an arbitrary subset 7 c G such that all its elements are of singular type. Define 
the singular plane of the subset y : 

T7= nTg. (10.3) 
gE7 

On this plane, all factors g E 7 are singular simultaneously. 

We will consider only such subsets 7, to which there correspond non-empty singular planes. 

An important point is that the same singular plane may correspond to different subsets. 
For example, in Fig.3 the pairs of propagators with momenta pi and pz; pi and pi +ps generate 
the same singular plane described by the equations p1 = pz = 0. Further, there is one largest 
among the subsets with the same singular plane. This follows from the fact that if K-, = X+ then 
sy = r-+!+. In Fig.3 such a subproduct consists of all three propagators. Subsets, to which new 
factors cannot be added without reducing their singular plane, will be described as complete 
and will be called (complete) IR-subgraphs or, if confusion is excluded, simply subgraphs. 
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10.3 Diagrammatic interpretation of IR-subgraphs. 

Take a Feynman graph and evaluate momenta for each line. To check if a given set of singular 
lines y is complete, perform the following test. Set to zero all the momenta flowing through the 
lines of 7, and all light external momenta. Using momentum conservation at vertices, reevaluate 
the momenta for the rest of the lines. If there is a line of singular type not belonging to 7, 
whose momentum will vanish after reevaluation, then the set 7 is not complete. If there are no 
such lines, then 7 is an IR-subgraph. For example, in Fig.$a the pair of vertical lines forms an 
IR-subgraph. 

Note that the same subset y in the same diagram G may be or be not an IR-subgraph, 
depending on whether the full Euclidean expansion problem is considered or its simplified 
version without contact terms (see subsect. 3.5). For example, for the graph in Fig.5 (masses 
in both lines are light) the entire graph will be its own IR-subgraph if the graph is considered 
as a distribution over Q, so that Q is included into integration momenta; the corresponding 
singular plane is described by the equations p = Q = 0. In the simplified version one considers 
integration only over the loop momentum p, while Q is fixed at a non-exceptional value (this 
means here simply that Q # 0); in this case the pair of lines cannot be an IR-subgraph because 
its singular plane is empty. 

The property of being IR-subgraph also depends on the additional restrictions specified for 
the heavy momenta in the particular problem. For example, in Fig.4a which differs from Fig.4b 
by a linear restriction Q, = Qs, the pair of vertical lines forms an IR-subgraph, while this is 
not so for Fig.4b. 

When a vertex should be included into an IR-subgraph? Recall that any vertex is a singular- 
type factor by definition (cf. subsect. 9.5), and its singularities are localized at the points where 
all the momenta from the set L, are equal to zero. Therefore, in the most general case the 
recipe is as follows: if all the lines incident to this vertex belong to the subgraph, then the 
vertex is to be included, too. However, in the simplified version of the expansion problem, an 
IR-subgraph may not contain a vertex with a non-zero total heavy external momentumentering 
into it. 

Starting from the basic analytical definition, one can always enumerate IR-subgraphs in 
any specific case. However, we do not attempt translating the definition of the IR-subgraph 
into the graph-theoretic language: the result would be cumbersome and practically useless. 
For the purposes of doing the combinatorics of factorization in [18], we will only need the 
properties of complements of IR-subgraphs that can be easily derived from the above definition 
(cf. subsects. 5.2, 6.1 and 6.4 in [18]). 

10.4 Why IR-subgraphs? 

The reason for considering only IR-subgraphs among all subproducts of G(p) is as follows. If 
y is a subgraph, then singularities of the formal expansion 

‘W?P) = [Ts-d~)l x [WA-h)1 (10.4) 
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near almost any point at the plane T-, (except for the intersections of a., with singular planes 
of factors not belonging to 7 ), are determined solely by 7. 

Vice versa, let po be any point from the space of p. Select from the graph the smallest 
subproduct 7 such that T,G\7(p) h ave no singularities at p = po. Then 7 will be an IR- 
subgraph. 

10.5 Hierarchy of IR-subgraphs. 

The set of all IR-subgraphs of a given graph has a natural ordering. Namely, 7 5 I if and only 
if 7 belongs to r. Note that if 7 5 r, then rr-, > xr. Correspondingly, one can define mazimal 
and mindmal subgraphs. Note that there may be several maximal subgraphs; their singular 
planes do not intersect. 

It is convenient to introduce the notion of immediate precedence for subgraphs. We say that 
the subgraph 7 immediately precedes the subgraph I, and write 7 Q I, if 7 < I and there are 
no subgraphs between 7 and I’, i.e. no subgraphs r’ such that 7 < I” c I. We describe the 
subgraph which immediately precedes the maximal one as subnzazimal. 

10.6 Proper variables of subgraphs. 

Let I be a subgraph of the graph G. In general, r(p, K is independent of some components of )~ 
p. Indeed, it is easy to check that r(p, K) is always invariant with respect to shifts in p parallel 
to ?~r. Split p into two parts: transverse and longitudinal with respect to xr : p = (pr,pk), so 
that the singular plane xr is described by the equation pr = 0. Then I’(p, K) depends only on 
6. The variables pr will be referred to as the set of proper variables of I. 

Although the choice of proper variables is not unique, transition to another set of proper 
variables is equivalent to a change of coordinates in the space of pr. Here invariant coordinateless 
formulations are possible and useful-for more on this see [20]. 

The proper variables of an IR-subgraph can be easily determined using its graphical repre- 
sentation. Thus, for the subgraph in Fig.3 the proper variables are the set of momenta pl and 
PZ (or PI and pi = PI + PZ etc.). 

Consider the case when the IR-subgraph has loops (see e.g. Fig.6). The loop momenta 
belong to the proper variables of the subgraph. Denote the set of all loop momenta as p!,“‘, and 
the rest of the proper variables as p$. So, 

PY = (Py,Py) (10.5) 

To conclude this section, note that any IR-subgraph can be considered as a graph in its 
own right. Then the loop momenta of the graph should comprise all proper variables of the 
IR-subgraph. Graphically, this corresponds to merging all the “external” vertices of the IR- 
subgraph into one. (In Fig.6, the external vertices are a and b.) The resulting graph possesses 
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an additional property: it is its own (and the only maximal) IR-subgraph. In that case the 
singular plane of the entire graph is reduced to a point which can be assumed to be the 
zero point. It is clear that for each subgraph one can consider the problem of its asymptotic 
expansion. Moreover, we will see in subsect. 11.3 that construction of the As-operation for 
the graph is logically preceded by its construction for the subgraphs. It is worth noting that 
the As-operation for a subgraph is formulated entirely in terms of its proper variables. 

10.7 Quantitative characteristics. 

Let us introduce some quantitative characteristics for description of singularities of IR-sub- 
graphs. For each IR-subgraph I define: 

dr = c dg, (10.6) 
ga 

which describes simultaneous scaling in n and the proper variables: 

r(xp, xn) = Adrr(m:, 6) (10.7) 

(cf. property (a), subsect. 9.4); 
dima (10.8) 

is the dimensionality of the space of proper variables of the subgraph; 

w = -dr - dimpr (10.9) 

is the singularity indes. Its meaning is as follows. If for all I 5 G one has w + N < 0 
(strict inequality!) then the formal expansion of G to order n N does not contain non-integrable 
singularities and is a correct asymptotic expansion in the sense of distributions. 

11 As-operation for products of singular functions. 

In this section, following the recipe of the extension principle (sect. 5), we establish formulae 
for the expansion of products of singular functions in the sense of distributions in the form of 
the so-called As-operation whose structure is similar to that of the Bogoliubov R-operation. 
The derivation presented bears a resemblance to, and was partially inspired by the analysis 
of the R-operation in [24]. Explicit expressions for counterterms of the As-operation (which, 
unlike the R-operation, is determined uniquely) will be obtained in the next section. 

11.1 General remarks and notations. 

We are going to derive the recipe of the As-operation, the instrument for evaluating expansions 
in the form of infinite asymptotic series for any product (graph) G(p) of the described type. 
We will use the notation: 

G(P, ~1 ,y, As G(P, 6) = c ~“G(P, 6). 
n 

(11.1) 
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Here each G, should be a distribution in p, and the dependence on n should be soft (see the 
definition in subsect. 5.1). The expansion (11.1) should be valid in the sense of distributions 
(see subsect. 5.1). This means that for each test function ‘p the following estimate should 
hold: 

/ &v(p) [GYP, K)- AsNG(P, ~11 = obNb (11.2) 

The subscript on the As-operation means that in (11.2) all the terms of order o(sN) are dis- 
carded, i.e. 

ASNG = c n”G,. (11.3) 
n<N 

Existence of such expansions is either obvious or non-trivial, depending on the point of view. 
It is rather obvious if one recalls the results of [l] wherefrom one concludes that expansion of 
G integrated with a test function runs in powers and logarithms of the expansion parameter 
and takes into account that such an expansion should be linear in test functions. On the other 
hand, from the point of view of the technique of [9] existence of such expansions is not at all 
trivial because the construction of [9] corresponds to an expansion similar to (11.3) for each N 
but with G, depending on N, too. 

11.2 Uniqueness of the expansion. 

From subsect. 5.2 it follows that if an expansion of the form (11.1) exists, then it is unique 
(provided one always expands in powers and logarithms of the small parameter). Uniqueness 
of the As-operation will allow us in subsect. 11.3 to determine the necessary conditions which 
it must satisfy. This will give us a sufficient number of hints to construct it explicitly. 

11.3 Localization property of the As-operation. 

Let us study the local structure of the As-operation (cf. remark (i) in subsect. 4.2). First of 
all note that the formal expansion 

G(P, ~1 N ‘WP, ~1, K -+ 0, (11.4) 

allows integrations with test functions p whose support does not intersect singular planes of 
the formal expansion: 

suPP (0 n (151 x7) = 0. (11.5) 

This follows from the properties of the functions of which G is built (cf. subsect. 9.4). The 
r.h.s. of (11.4) defines a functional which is an asymptotic expansion of the functional on the 
l.h.s., on the subspace of test functions satisfying (11.5). F rom uniqueness it follows that on test 
functions satisfying (11.5) the As-operation should coincide with the operation of the formal 
expansion T: 

As GYP, ~1 = TG(P, ~1, P e U% (11.6) 
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Further, consider any small region 0, and let r be a subgraph such that TG\T(p) has no 
singularities within CJ (cf. subsect. 4.1). Take an arbitrary ‘p such that supp ‘p c 0. Then 

j+ G(P, K)PO(P) = / r(p, ~E)cP”(P, ~1, 
where 

rp”(~, ~1 = G\~(P, n)cp(p) (11.8) 

is a test function with supp v C supp yo”, but depending on 6. 

Recall (subsect. 10.6) that r is independent of that component of p which is longitudinal 
with respect to rrr. Therefore we may perform integration of q” over the longitudinal com- 
ponents on the r.h.s. of (11.7). S o, we arrive at the problem of expansion for the subgraph 
in terms of its proper variables, and with test functions depending on the expansion parame- 
ter. The assumptions made in subsect. 9.4 ensure that the expansion procedure described in 
subsect. 5.4 will be applicable here. 

So, assume that the problem of expanding r(p, K) is solved, i.e. that the action of the As- 
operation on r is already known. Then the expansion of the r.h.s. of (11.7) can be represented 
a3 

/ dp [As%, ~11 x [‘W’(P, ~)1= / dp [As r(pt ~11 X [TG\r(p, ~11 v(p). 

On the other hand, the expansion of the r.h.s. of (11.7) should be given by 

(11.9) 

/ @As G(P, KMP). 

Then again from uniqueness of the As-operation we conclude that, given the relation described 
above between the region 0 and the subgraph T, on all test functions localized in 0 the following 
loc&zation property must be valid: 

As G(P) = PG\Wl x IAs %)I, p E 0. (11.10) 

This is the most important structural property of the As-operation. It exhibits the recursive 
structure of the expansion problem considered on the entire collection of Feynman diagrams. 

11.4 Structure of the As-operation. 

Let us represent the As-operation in terms of counterterms localized at singular points of the 
formal expansion, in analogy with the well-known expression of the Bogoliubov R-operation in 
terms of quasilocal counterterms [24]. As G may differ from TG only by corrections localized 
on singular planes of the formal expansion. Consequently, one can take the following ansatz 
for the full expansion: 

As G = TG + c (ET) I(c.7, (11.11) 
7 

where summation runs over all IR-subgraphs, while the distribution (Ey) is localized on 1r7. 
Let us determine Ko,-, from (ll.lO), expanding the As-operation in accordance with (11.11): 

TG + 7TG Pr) I(c.7 = (TG\r) (Tr + c (Er) Icr,r,7). (11.12) 
-0 
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We get the conditions: 

Kc,7 = Kr.-, (TG\r). 

Without loss of generality we may assume that for each r : 

(11.13) 

Kr,r = 1. (11.14) 

(Indeed, within the problem for the subgraph r considered in terms of its proper variables, the 
-distribution (Er) is localized at the origin, so that K r,r must be a constant independent of 
momentum variables. And such a constant can always be included into (Er).) 

Setting 7 = r in (11.13) and using (11.14), we get: 

KGJ- = TG\r (11.15) 

for each subgraph r 5 G. We see that the dependence on r disappears from the r.h.s. of (11.13), 
as expected. Finally: 

As G = TG + c (Ey) (TG\-/) (11.16) 
-iSG 

The expressions (Er) will be referred to as countertens for subgraphs y. 

For (11.1) to be true, it is necessary that the counterterm had the form of an infinite series 

(E7) = c 6” W), 9 (11.17) 
R 

where (E7),, depend softly on it. 

11.5 Summary. 

So, if the As-operation (ll.l)-(11.3) exists, it is unique and, in accordance with the extension 
principle, must have the form (11.16)-(11.17). H owever, the analysis of subsect. 11.3 indicates 
that the As-operation can be naturally defined by (11.16) using the induction based on the 
natural order among IR-subgraphs (see also below sect. 12). Then if the As-operation has 
been constructed for all y < r, it only remains to determine the counterterms (Er) possessing 
all the required properties. Note that the reasoning of sect. 7 is in fact applicable to any 
minimal IR-subgraphs, which provides a correct starting point for the induction. The general 
formulae for the counterterms derived in the next section will include the case of minimal 
subgraphs as a simple special case. 

12 Expressions for counterterms of the As-operation. 

12.1 Structure of the Ad-operation. 

Suppose that the existence of the As-operation has been established for all 7 < r, and explicit 
expressions for (Er) of the form of (11.17) h ave been found. From the reasoning of the precedent 
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section it follows that the expansion for r valid on test functions which are equal to zero around 
p = 0 has the form: 

rh 4 =o As’r (IT, 4, a # 07 (12.1) 

where As’ is the As-operation without the last counterterm: 

As’r = Tr + c (ET) (Tr\r) , 
7<r 

(12.2) 

so that 
Asr = A0 + (Er). (12.3) 

Indeed, let H run over all submaximal subgraphs of f’, i.e. H a r (see subsect. 10.5). Then 
pairwise intersections of the singular planes rr,y consist only of the point pr = 0. Therefore, if 
q(a) = 0 around pr = 0 then ‘p can be represented as 

(12.4) 

where p&r) G 0 in a neighbourhood of T& for any H’ # H. Then 

< rip > -C bH B= c c H,r\HppH , 
Hd- 

Kzl zr < As H, Tr\HpH > 

(12.5) 

(cf. the reasoning in subsect. 11.3, especially (11.9)). On the other hand, the operation As’ 
as defined in (12.2) inherits the localization property analogous to (11.10): 

< As’r,(oH >=< As H,T~\H~Q >, (12.6) 

so that the r.h.s. of (12.5) is equal to 

c < As’r, PH >=< AST, ‘p >, (12.7) 
II4 

whence follows (12.1). 

12.2 Approximation properties of the As’-operation. 

Our inductive assumptions imply that all counterterms (Ey) for y < r have the form (11.17). 
Then As’r can be represented as an expansion in powers of n : 

As’rb, 4 = C ch, 4, 
n 

(12.8) 

where l?l,(a, 6) can softly depend on K. Besides, the functions r: possess a number of natural 
properties following from our assumptions. First, they inherit the scaling property (10.7): 

r;(xa,xK) = Xdg-nr;(pr, &). (12.9) 
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Second, from (12.9) and the soft dependence on n, one immediately gets the scaling property 
in the momentum argument: 

r;(xm, E) = ,idg-n (r;tm, K) + soft corrections). (12.10) 

To put it differently, the dependence of the expression X”-d~l?~(Xpr-, K) on X is soft. 

Note the important parallel between what we have here and what we had in subsect. 7.1: 
the expansion (12.8), similarly to (7.2), contains terms progressively more singular at pr - 0 
as n -+ 00, and both expansions are valid in the sense of the distribution theory for pr # 0. 
We can push the analogy even further. Consider the expansion (12.8) truncated at the terms 
of order O(nN) : 

r = h&r + o(nN), a #O. (12.11) 

(The use of the subscript N here is analogous to (11.3).) From (12.10) it follows that the r.h.s. 
of (12.11) becomes non-integrable at zero for wr + N 2 0 (4. is defined in (10.9)). However 
if the test function has a zero of order q- + N + 1 at pr = 0, then the r.h.s. of (12.11) is well 
defined and, moreover, on such test functions the estimate o(sN) of the expansion (12.11) is 
valid. 

The last property is fully natural. Its proof is essentially not difficult, is entirely based 
on power counting and has the same structure as that in subsect. 7.2. One considers a 
neighborhood of the origin of a radius 0( IC) wherein the uniformity property (12.9) is used for 
explicitly extracting the factor O(K N+’ ) from the integral of the remainder term of the expansion 
over this neighbourhood. Then one uses the properties of the As-operation on subgraphs (the 
inductive assumption) to estimate the integral over the rest of the space. This last step is 
somewhat cumbersome though fully straightforward. A detailed discussion can be found in 
[20]. (See also sect. 13 below.) 

12.3 Expressions for counterterms. 

The above results allow one to apply here the same reasoning as in the example in sect. 7. 
From the extension principle it follows that the expansion (12.11) can be extended to all pr by 
addition of counterterms localized at pr = 0 : 

r = A&r -I- (ENr) i- o(KN). (12.12) 

(ENr) may only contain derivatives of the &function of order not higher than UP + N : 

(ENr) bd = c ~.&b%.nb-d 
l~l<wr+N 

(12.13) 

(here S,,,(pr-) is a full basis of S-functions and their derivatives localized at pr = 0; the order 
of derivatives is denoted as Ial). To find explicit expressions of the coefficients cr,, (recall that 
in general they depend on N, but it will turn out possible to choose them independent of N), 
we use the trick of subsect. 7.9. 
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Consider the expression 

/ h-A(prPh-) = 4~~1, (12.14) 

where 
A=r-Ashr, (12.15) 

B = ‘P - T,+N% (12.16) 

with wr as defined in (10.9). The fact that the 1.h.s. of (12.14) is indeed o(~~) is proved exactly 
as in subsect. 7.9; one only has to note that owing to the scaling properties (10.7), (12.9) one 
has: 

(I - Ash) r(xa, K) = X=+ (I - Ash) r(a, K/X) (12.17) 

& Xdr x 0 (wN) , a # 0. 

Therefore, theintegral converges at pr + 00 by power counting. (Note, however, that this 
is not an ordinary absolutely convergent integral because the term A&l? is a distribution. A 
more accurate definition of the integral in (12.14) involves introducing a cut-off H(pr/A) with 
any H defined as in (8.3) and taking the limit A + 03. The resulting value is independent of 
the exact form of H. Also note that the integral (12.14) can be transformed into an absolutely 
convergent integral of ordinary functions by invoking the explicit expressions for the operation 
As’ and integrating out the &functions.) 

Introduce the dimensional regularization into the 1.h.s. of (12.14), multiply A and B, and 
perform termwise integrations using the fact that the dimensionally regularized integration 
nullifies integrands with simple scaling properties-cf. (7.27). Finally, we arrive at the following 
analogue of (7.39): 

cr.4~) = Jda%.&r) rh n), (12.18) 

where ‘Pr+ is the basis of polynomials of the variable a, which is dual to the basis of &functions 
s,,,(a)-cf. (7.35). The counterterms (Er), from (11.17) now are as follows: 

(W, = c cr,,(K) h,a. 
lal=wr+n 

(12.19) 

Using the scaling properties, we get: 

cy,,(K) = &+q+..Jq,Jl), (12.20) 

where the dots denote a correction proportional to D-4, the deviation of the complex parameter 
of dimensionality from the canonical integer value. The integer part of the exponent in (12.20) 
shows which order in n this term belongs to.’ One can also see that the dependence on n in the 
expansion AsF is as discussed in subsect. 5.3. 

The formulae (11.16), (11.17), (12.19) and (12.18) p resent the full solution of the Master 
problem in the Euclidean case. 
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12.4 Remarks. 

(i) It should be stressed that although the above formulae are represented in a form which 
is specific to dimensional regularization, there are no serious obstacles (except for necessity to 
introduce a large number of new notations) for writing analogous formulae in other regulariza- 
tions (e.g. using cut-offs). But this falls outside the scope of the present paper (see, however, 

POD. 
(ii) Concerning the mathematical aspects of our derivation, the full details of the proof 

that are regularization independent are presented in [20]. As to the use of the dimensional 
regularization in the precedent section, it can be justified along the following lines. First, 
the definition of dimensionally regularized integrals of arbitrary smooth test functions over 
momentum variables was presented in [34]. S econd, as noted after (12.17), the integral in 
(12.14) can be represented as an absolutely convergent integral of ordinary smooth functions. 
Therefore, one only has to extend the results of [34] t o a wider class of functions, which seems 
to present no difficulties except that it is a rather boring excercise. This issue will, hopefully, 
be addressed in a future publication. Another approach would be to check the final formulae 
for expansions of Feynman diagrams using the o-parametric integral representation. But the 
attempts to do so [16] show that a full proof would be a straightforward, cumbersome and 
unilluminating procedure. 

12.5 Commutativity with multiplication by polynomials. 

In conclusion of the discussion of the Master problem, a remark is in order. We have proved 
existence of the As-operation and its uniqueness (subsect. 5.2). It follows that it commutes 
with multiplication of r by an arbitrary polynomial of momenta-indeed, the polynomial can 
either be included into the distribution to be expanded (F) or, equivalently, it can be considered 
to be a part of the test function; the final result cannot depend on which option is chosen. This 
means that the operation E which generates the counterterm for a subgraph, commutes with 
multiplication by polynomials, too. This can also be checked with the help of the explicit 
representations obtained above. 

The described property of the As-operation is useful in situations when one needs to trans- 
form expansions of Feynman diagrams to a convenient form. 

13 Example of an As-expansion. 

13.1 The expression to be expanded and its singularities. 

Let the integration variable p consist of two 4-dimensional components: 

P = (Pl,Pd. (13.1) 
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The product to be expanded is (cf. Fig.7a): 

G(P, 6) = gl(p, nbz(p, ~)gdpr ~1, 

where 

Lh(P?n) = l 
p: + d’ 

(13.2) 

(13.3) 

gz(P,n) = l 
p; + d 

gh K) = (pl _ p;)2 + Ic2. 
The expansion of an isolated propagator in the sense of the distribution theory has been ob- 
tained and studied in sect. 7. 

Each propagator in (13.2) generates, upon formal Taylor expansion in K, singularities at 
the points where the corresponding momentum variable vanishes. Thus, the singular planes for 
each factor are: 

Xl = IP I Pl = 01, (13.4) 

rz = IP I Pz = 01, (13.5) 

r3 = tP I Pl - P2 = 01, (13.6) 

i.e. xl consists of all p such that p, = 0, etc. 

The set of all IR-subgraphs of G comprises three subgraphs yi, i = 1,2,3, each consisting 
of one factor, and G itself. The two-factor subsets do not satisfy the completeness condition 
and therefore are not IR-subgraphs. 

13.2 Fixing singularities corresponding to subgraphs. 

Now we note that in the space of p without the point p = 0, the planes xi do not intersect, so 
that a reasoning similar to that of subsects. 7.10 and 12.1 can be used. Indeed, consider a test 
function pi(p) which is non-zero within the region 0 shown in Fig.7b and therefore is zero in 
neighbourhoods of both x2 and rrs. Then 

j ~PI dpz G(P, K) VI(P) s / dpl sl(P, 6) GI(PI, n), (13.7) 

where 

h(Pl, K) = /dn G\gl(p, K) m(p) = / dPzgz(p, K)dp, K) W(P). (13.8) 

The expansion of the expression (13.7) can be obtained (cf. subsect. 11.3; also note that we 
present the formulae in dimensionally regularized form) by Taylor-expanding $(pl, K) (which 
does not give rise to any singularities in ~1) and using (7.38) t o expand the propagator gl (cf. 
(11.10)). Denote: 

PM (P, 6) = ccdn) UPI) (13.9) 
OI 
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with c-(n) given by (7.39), where 6, and ‘P, have been introduced in (7.34), (7.35) (it is 
convenient to assume that 6s = 6 and P = 1). Then one can rewrite the obtained result as 
follows: 

G(P, ~1 ,zo (TglhK)gz(p> ~)gdp, K)) + CQdp,~)dp, ~1) Phi (P, ~1, (13.10) 

which is valid on the test functions ‘pr described above. 

Analogous expansions can be obtained for the cases of test functions ~1 and (ps that are in 
the same relation to the singular planes ?rl and x3, respectively, as ‘pl is to rrr. 

Consider a test function (00(p) which is identically zero in some neighbourhood of the point 
p = 0. It can always be represented as 

PO(P) = cpl(P) + a(P) + Vps(P), (13.11) 

where all ‘pi are as described above. Therefore, the three expansions that are valid on each Cpi 
can be glued together into an expansion that is valid on any ‘ps : 

G(P, ~1 =, (‘b(p, K) dp, ~1 dp, ~1) + (Tdp, 6) dp, ~1) [W (P, 6) (13.12) 

+ (Tglb, K) s& ~1) [Eszl(~, K)+ (Tgl(p, ~1 sdp, 6)) P%~I(P, ~1 

E As’G(p, K). 

This agrees with (12.1)-(12.2). 

Consider the expansion (13.12) to order o(K’) : 

As;G(p, K) = 
1 

P:P;(Pt - PZY 
(13.13) 

-lc 
2 1 1 1 

P;‘P%Pl - PL# 
+ 

P:Pi(Pl - P# 
+ 

P:P%Pl - P2Y 1 
+cdn) 1 s(P’)p;(pl ‘_ p*)2 + $(Po) l (pl-p*)2+p~p~ A( p1---2) 1 

Recall that 
Q(K) = / dDq (q* + /c’)-’ = K*(-‘) c,,( 1). (13.14) 

One sees that the O(n*) terms possess a logarithmic singularity at p = 0. Therefore, the 
r.h.s. of (13.13) is well-defined on test functions q(p) such that ~(0) = 0. Moreover, on such 
test functions the asymptotic character of the expansion is preserved which means (to order 
o(K’)) that: 

/ d*“pcpW MP, K)- AGYP, ~)l = 4~~). (13.15) 

This should be compared with (7.3). An explicit proof of (13.15) proceeds along the same lines 
as that of (7.3). A new element here is that one should consider cone regions in the integration 
space, as follows. (There is a limited resemblance between such cone regions and the Hepp 
sectors used in the theory of a-representation. However, the Hepp sectors correspond to a 
complete resolution of the recursive structure of singularities, while in our case only one-level 
descent-form the complete graph to its largest subgraphs-is performed.) 
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13.3 Approximation properties of As’. 

Let B,(p) be such that O,(p) E 1 around each non-zero point of rrr, B,(p) E 0 around non-zero 
points of r2 and 1~s, and &(Xp) = @l(p) for each X, p # 0. C onsider the following contribution 
to (13.15): 

J @D~b(~)d~) MP, K)- -%G(P, ~11. (13.16) 

One splits the integration region into two parts: 1~11 > n and 1~11 < n (cf. Fig.7c and sub- 
sect. 7.2). In the region lpll < n, one rescales p -+ ‘up then takes into account the scaling 
properties of G (which are not violated by the As-operation) and the fact that p(p) N p near 
p = 0, and finds that 

J ,pl,<~ dZDz4(p)cF?(d [G(P, K) - A@(P, ~11 = O(4. (13.17) 

In the region lpll > K, it is convenient to reorder the integrand of (13.16) as follows: 

J ,Pl,>r d*“~Q4 @(PI 
I 

G(P, 6) - pfp;cp;- p2j2 (13.18) 

+n2 1 1 1 1 

P;lP%Pl - PZY 
+ 

P?P%Pt - PZY 
+ 

P?P%Pl - P2)4 II 
= J ,Pl,>K d2Dpe1(p) @(p) x 11 p: : /$ - ; + KZ$ p; : &l (pl _ pf)2 + $ 1 

+i [ If 1 1 1 

Pi + K* (PI - P# + nz - pgp1 - p# 
+ PC2 

( 

1 1 

P%Pl - P# 
+ 

P%Pl - P2)4 )I 

+ -d-j [ I[ 1 1 1 

Pi + K2 (Pl - p# + 62 - pgpl - p*)Z II 
Consider e.g. the first term contributing to the r.h.s.: 

where 

J ,P,,>LdZD~~~(~) P(P) 

[ 

1 
X 

p: + K2 - j+ + +f - Q(s)J(pl) 1 p; : .2 (pl _ p;)’ + Icz 

= J ,pl,>rr dDPl Y(Pl? K) 1 p: : K2 - i + K$ , 1 
u(pt,n) = /dDp, 

4 CO 

(Pz + e(Pl - P# + K’) 

(13.19) 

(13.20) 

The square-bracketed term on the r.h.s. of (13.19) is bounded by const x ‘c4/lpl 1s. To estimate 
$j, one should take into account that the integration over pz in (13.20) runs over the region 
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1~21 < J~PII, and th a p can be represented as pr& +~.$a, where both pi are smooth functions t - 
[63]. Resealing the integration variable as p2 + lpll p2, one gets: 

%I, 6) = IPII~-~+’ ip,,<k dDpz 
%kPz)~l(Pl, IP*l .P2) 

(Pi + ~‘/IP1I’)(@1 - a)2 + n*/lplly 
(13.21) 

Since pr (pr , ]pr ] .p~) can be bounded by const x jpl], one sees that p(pl, K) is bounded by const x 
Ipl I. (It is not difficult to understand that since the expansion (13.12) should be asymptotic only 
at D = 4, one may check estimates like (13.15) only at D = 4.) One arrives at the conclusion 
that the expression (13.19) is o(K’), as expected. The remaining terms in (13.18) are considered 
in the same way, and, finally, one obtains (13.15). 

13.4 The last counterterm. 

The result of the preceding subsection (the estimate (13.15)) a 11 ows one to repeat the reasoning 
of subsect. 12.3. 

One finally obtains: 

where 

G(P, K) 2, As2G(p, K) + o(~‘), (13.22) 

AszG(P, K) = As;G(p, K) + cG,O(K)6(P) (13.23) 

(6(p) = J(P$(Pz)) and 

cc,,,(n) = JP~G(~, K) = JdDn dDm G(P~,Pz, ~1. (13.24) 

Examples of higher-order counterterms are: 

(13.25) 

where 
CG,Z,O(K) = J dDpl dDpzp: G(pl,pz, K), (13.26) 

and 

%0*2(n) 84~(Pl)~p~(P2L (13.27) 

where 

CG,O,2(6) = J dDpl dDp2(pl .pz)G(p~,pz,n), (13.28) 

etc. Concerning diagrammatic interpretation of (13.24), (13.26) and (13.28), see Fig.7d. 

This completes our discussion of the example. 

The essential point to be stressed here is that the proof involves nothing but the power 
counting. The same remains true in the most general case as well, which justifies the conclusions 
of subsect. 12.2. For a more formal treatment of this point see [20]. 

Note that in practice there is no real need to performed the detailed analysis as above. It 
is simply sufficient to enumerate singularities of the formal expansion, determine (by power 
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counting) what counterterms are needed, and to find counterterms by formal integration of the 
ansatz. for the As-operation with suitable polynomials to project out the coefficients. 
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Figure captions. 

Fig.1. Kinematics of three-point functions. 

Fig.2. (a) Kinematics of light-by-light scattering. It differs from the general 4-point function 
(b) by the restriction qi + qs = 0. 

Fig.3. Three light-mass propagators connected to a common vertex form a complete IR- 
subgraph. 

Fig.4. The property of being an IR-subgraph depends on restrictions imposed on heavy 
external momenta: in (a) the pair of vertical lines constitutes an IR subgraph, while in (b) it 
does not. 

Fig.5. This graph is its own IR-subgraph if the contact terms localized at & = 0 are to be 
taken into account; it is not, if & is just fixed at a non-zero value. 

Fig.6. A simple example of the division of the proper variables of IR-subgraphs into “inter- 
nal” components corresponding to loops and the ‘I external” components. 

Fig.7. (a) A graphical representation of the product (13.2). (b) The test function ‘pi is 
non-zero within the region enclosed by the dashed line. (c) Geometry of integrations in (13.19) 
and (13.20). (d) A graphical interpretation of the expressions (13.24), (13.26) and (13.28). 
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